K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDE có

góc AEB=góc ADB=90 độ

=>ABDE là tứ giác nội tiếp

b: Xét (O) có

ΔACM nội tiếp

AM là đường kính

=>ΔACM vuông tại C

Xét ΔADB vuông tại D và ΔACM vuông tại C có

góc ABD=góc AMC

=>ΔADB đồng dạng với ΔACM

=>AD/AC=AB/AM

=>AD*AM=AB*AC

a: Δ=(m-2)^2-4(m-4)

=m^2-4m+4-4m+16

=m^2-8m+20

=m^2-8m+16+4

=(m-2)^2+4>=4>0

=>Phương trình luôn có 2 nghiệm pb

b: x1^2+x2^2

=(x1+x2)^2-2x1x2

=(m-2)^2-2(m-4)

=m^2-4m+4-2m+8

=m^2-6m+12

=(m-3)^2+3>=3

Dấu = xảy ra khi m=3

Câu 2:

1: \(y=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)x+4=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)\cdot x=\sqrt{3}+5-4=\sqrt{3}+1\)

=>\(x=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{\left(\sqrt{3}+1\right)^2}{3-1}=\dfrac{4+2\sqrt{3}}{2}=2+\sqrt{3}\)

2: \(x^2-2\left(1-m\right)x-2m-5=0\)

=>\(x^2+\left(2m-2\right)x-2m-5=0\)

a: \(\Delta=\left(2m-2\right)^2-4\left(-2m-5\right)\)

\(=4m^2-8m+4+8m+20\)

\(=4m^2+24>=24>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Câu 1:

2: Thay x=2 và y=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2a-\left(-1\right)=5\\b\cdot2+a\cdot\left(-1\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a=5+\left(-1\right)=4\\2b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\2b=a+4=6\end{matrix}\right.\)

=>a=2 và b=3

2: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)

Khi tăng mẫu số thêm 4 đơn vị thì phân số đó bằng 1/3 nên ta có:

\(\dfrac{a}{b+4}=\dfrac{1}{3}\)

=>3a=b+4

=>3a-b=4(1)

Khi giảm mẫu số đi 2 đơn vị thì phân số bằng với 2/3 nên ta có:

\(\dfrac{a}{b-2}=\dfrac{2}{3}\)

=>3a=2(b-2)

=>3a=2b-4

=>3a-2b=-4(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=4\\3a-2b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=8\\3a-b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=8\\3a=b+4=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=8\end{matrix}\right.\)(nhận)

Vậy: Phân số cần tìm là \(\dfrac{4}{8}\)

9 tháng 12 2023

loading...  loading...  

10 tháng 11 2021

Kẻ AH⊥BC

ta có: \(VP=AB^2+BC^2-2.AB.BC.cosB=AB^2+BC^2-2.AB.BC.\dfrac{BH}{AB}=AB^2+BC^2-2.BH.BC=AB^2-BH^2+BC^2-2.BH.BC+BH^2=AH^2+\left(BC-BH\right)^2=AH^2+CH^2=AC^2=VT\)

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

Vì $(d)$ đi qua điểm $M(2,3)$ nên:

$y_M=ax_M+b\Leftrightarrow 3=2a+b(1)$

Vì $(d)$ cắt trục tung tại điểm có tung độ 2, tức là $(d)$ cắt trục tung tại điểm $(0,2)$

$\Rightarrow 2=a.0+b(2)$

Từ $(1); (2)\Rightarrow b=2; a=\frac{1}{2}$