K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2022

4.

Đáp án A đúng

\(y'=9x^2+3>0;\forall v\in R\)

6.

Đáp án  B đúng

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)

NV
21 tháng 9 2021

1.

\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)

Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:

\(\left|-1-\left(-m+2\right)\right|>3\)

\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)

2.

\(y'=-3x^2+6x+m-1\)

\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)

Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)

Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:

\(\left|x_1-x_2\right|>1\)

\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)

\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)

\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)

Có đúng 1 giá trị nguyên âm của m thỏa mãn

NV
21 tháng 9 2021

3.

\(y'=x^2+6\left(m-1\right)x+9\)

\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)

\(\left|x_1-x_2\right|=6\sqrt{3}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)

\(\Leftrightarrow36\left(m-1\right)^2-36=108\)

\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Có 1 giá trị nguyên âm của m thỏa mãn

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

4 tháng 2 2016

đặt x =tant 

là xong trong 1 nốt nhạc

4 tháng 2 2016

 

Tách sin^2 = 1-cos^2=(1-cos)(1+cos)

 


Dùng phương pháp đồng nhất hệ số, đưa về thế này

1/cos +1/2(1-cos) -1/2(1+cos)

 

25 tháng 5 2016

chữ nhỏ quá mk ko thấy  j cả

25 tháng 5 2016

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với

15 tháng 3 2017

Câu 31 thử ĐA

Câu 33: có công thức

Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d

\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D

15 tháng 3 2017

Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh

4 tháng 7 2016

nhờ người ta giải mà cười hihi

em thì bó tay chấm chữ com vào ăn

4 tháng 7 2016

TXĐ: D=R

\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)

\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)

Đặt t = \(3^{x^2+x-1}\)      (t>0)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)

 

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Câu 69:

Ta có:

\(f(x)+f(y)=1\Leftrightarrow \frac{9^x}{9^x+m^2}+\frac{9^y}{9^y+m^2}=1\)

\(\Leftrightarrow \frac{9^x}{9^x+m^2}=1-\frac{9^y}{9^y+m^2}=\frac{m^2}{9^y+m^2}\)

\(\Leftrightarrow 9^{x+y}=m^4\Leftrightarrow (3^{x+y}-m^2)(3^{x+y}+m^2)=0\)

\(\Rightarrow 3^{x+y}=m^2\) (do \(3^{x+y}>0; m^2\geq 0\Rightarrow 3^{x+y}+m^2>0\) ) (1)

------------------------------------------------

Tiếp theo: \(e^{x+y}\leq e(x+y)\Leftrightarrow e^{x+y-1}\leq x+y\)

Đặt \(x+y=k\Rightarrow e^{k-1}\leq k\Leftrightarrow e^{k-1}-k\leq 0\)

Đặt \(e^{k-1}-k=f(k)\Rightarrow f(k)\leq 0(*)\)

Có: \(f'(k)=e^{k-1}-1=0\Leftrightarrow k=1\)

Lập bảng biến thiên ta thấy rằng \(f(k)_{\min}=f(1)=0\) hay \(f(k)\geq 0(**)\)

Từ \((1);(2)\Rightarrow f(k)=0\) hay \(k=1\Leftrightarrow x+y=1\)

Thay vào (1) ta có \(m^2=3\Leftrightarrow m=\pm \sqrt{3}\)

Vậy có 2 giá trị m thỏa mãn. đáp án D

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Câu 70:

Để hai pt lần lượt có hai nghiệm phân biệt thì

\(\Delta _1=\Delta_2=b^2-20a>0\Leftrightarrow b^2> 20a\) (1)

Khi đó, áp dụng hệ thức Viete ta có:

Đối với PT 1: \(\ln x_1+\ln x_2=\frac{-b}{a}\Leftrightarrow \ln (x_1x_2)=\frac{-b}{a}\)

\(\Leftrightarrow x_1x_2=e^{\frac{-b}{a}}\)

Đối với PT 2: \(\log x_1+\log x_2=\frac{-b}{5}\Leftrightarrow \log (x_1x_2)=\frac{-b}{5}\)

\(\Leftrightarrow x_3x_4=10^{\frac{-b}{5}}\)

\(x_1x_2> x_3x_4\Leftrightarrow e^{\frac{-b}{a}}>10^{\frac{-b}{5}}\)

\(\Leftrightarrow 10^{\frac{-b}{a\ln 10}}> 10^{\frac{-b}{5}}\)

\(\Leftrightarrow \frac{-b}{a\ln 10}>\frac{-b}{5}\Leftrightarrow a>\frac{5}{\ln 10}\)

\(\Leftrightarrow a> 2,71...\Rightarrow a\geq 3\) (vì a nguyên dương)

Theo (1) ta có: \(b^2>20a\geq 60\Rightarrow b\geq 8\) (do b nguyên dương)

Vậy \(2a+3b\geq 2.3+3.8\Leftrightarrow 2a+3b\geq 30\)

Đáp án A