Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 4x2 + 4x
= x(x2 - 4x + 4)
= x(x - 2)2
b) x2 - 3x + 2
= x2 - x - 2x + 2
= (x2 - x) + (2x - 2)
= x(x - 1) + 2(x - 1)
= (x + 2)(x - 1)
c) 8x3 + \(\dfrac{1}{27}\)
= \(\left(2x+\dfrac{1}{3}\right)\)\(\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)\)
d) 64x3 - \(\dfrac{1}{8}\)
= \(\left(4x+\dfrac{1}{2}\right)\left(16x^2-2x+\dfrac{1}{4}\right)\)
e) x2 - 4 + (x - 2)2
= (x + 2)(x - 2) - (x - 2)2
= (x - 2)[(x + 2) - (x - 2)]
= (x - 2)(x + 2 - x + 2)
= 4(x - 2)
f) x3 - 2x3 + x - xy2
= -x3 + x - xy2
= -x(x2 - 1 + y2)
g) x3 - 4x2 - 12x + 27
= (x3 + 27) - (4x2 + 12x)
= (x + 3)(x2 - 3x + 9) - 4x(x + 3)
= (x + 3)[(x2 - 3x + 9) - 4x]
= (x + 3)(x2 - 3x + 9 - 4x)
= (x + 3)(x2 - 7x + 9)
h) 2x - 2y - x2 + 2xy - y2
= (2x - 2y) - (x2 - 2xy + y2)
= 2(x - y) - (x - y)2
= (x - y)(2 - x + y)
i) 3x2 + 6x + 3 - 3y2
= 3(x2 + 2x + 1 - y2)
= 3[(x2 + 2x + 1) - y2]
= 3[(x + 1)2 - y2]
= 3( x + 1 - y)(x + 1 + y)
k) 25 - x2 - y2 + 2xy
= 25 - (x2 - 2xy + y2)
= 25 - (x - y)2
= (5 - x + y)(5 + x - y)
l) 3x - 3y - x2 + 2xy - y2
= (3x - 3y) - (x2 - 2xy + y2)
= 3(x - y) - (x - y)2
= (x - y)(3 - x + y)
m) x2 - y2 + 2x - 2y
= (x2 - y2) + (2x - 2y)
= (x - y)(x + y) + 2(x - y)
= (x - y)(x + y + 2)
n) x4 + 2x3 - 4x - 4
= (x4 - 4) + (2x3 - 4x)
= (x2 - 2)(x2 + 2) + 2x(x2 - 2)
= (x2 - 2)(x2 + 2 + 2x)
o) x2(1 - x2) - 4x - 4x2
= x2(1 - x)( 1 + x) - 4x(1 + x)
= x(1 + x)[x(1 - x) - 4x]
= x(x + 1)(x - x2 - 4)
p) x3 + y3 + z3 - 3xyz
= x3 + y3 + z3 - 3x2y + 3x2y - 3xy2 + 3xy2 - 3xyz
= [(x3 + 3x2y + 3xy2 + y3) + z3] - (3x2y + 3xy2 + 3xyz)
= [(x + y)3 + z3] - 3xy(x + y + z)
= (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z)
= (x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy)
= (x + y + z)(x2 + y2 + z2 - xy - xz - yz)
q) (x - y)3 + (y - z)3 + (z - x)3
= [(x - y) + (y - z)][(x - y)2 - (x - y)(y - z) + (y - z)2] + (z - x)3
= (x - z)(x2 - 2xy + y2 - xy + xz - y2 + yz + y2 - 2yz + z2) - (x - z)3
= (x - z)(x2 + y2 + z2 - 3xy + xz - yz) - (x - z)3
= (x - z)[x2 + y2 + z2 - 3xy + xz - yz - (x - z)2]
= (x - z)(x2 + y2 - 3xy + xz - yz - x2 + 2xz - z2)
= (x - z)(y2 - 3xy + 3xz - yz)
= (x - z)[(y2 - yz) - (3xy - 3xz)]
= (x - z)[y(y - z) - 3x(y - z)
= (x - z)(y - 3x)(y - z)
Nhớ tik nha
a)\(2x^2-7xy+5y^2\)
\(=2x^2-2xy-5xy+5y^2\)
\(=2x\left(x-y\right)-5y\left(x-y\right)\)
\(=\left(x-y\right)\left(2x-5y\right)\)
b)\(x^3+3x^2y-4xy^2-12y^3\)
\(=\left(x^3+3x^2y\right)-\left(4xy^2+12y^3\right)\)
\(=x^2\left(x+3y\right)-4y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2-4y^2\right)\)
\(=\left(x+3y\right)\left(x-2y\right)\left(x+2y\right)\)
ta co :
(x+y+z).(x/(z+y)+y/(z+x)+z/(x+y))=1
ban cu phan tich cai bieu thuc tren thi ket qua thu duoc se la:
x^2/(z+y)+y^2/(x+z)+z^2/(x+y)+z+x+y=1
ma x+y+z=1===>dpcm
a: \(x^2-4x-5=\left(x-5\right)\left(x+1\right)\)
b: \(x^2-3x+2=\left(x-2\right)\left(x-1\right)\)
d: \(2x^2-3x+1=\left(x-1\right)\left(2x-1\right)\)
k: \(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)
Bài 2:
a: \(\Leftrightarrow4x^2=9\)
=>(2x-3)(2x+3)=0
hay \(x\in\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\)
b: \(\Leftrightarrow4x^2-4x+1-4x^2+12x-x+3=-3\)
\(\Leftrightarrow7x+4=-3\)
hay x=-1
Bài 3:
x=2013
nên x+1=2014
\(A=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+2014\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+2014\)
=2014-x
=2014-2013=1
Trả lời:
b, \(\left(x+7\right)\left(\frac{x+5}{2}-\frac{4x}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+7=0\\\frac{x+5}{2}-\frac{4x}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-7\\x=3\end{cases}}}\)
Vậy S = { -7; 3 }
Tự kết luận nghiệm nhé
b, \(\left(x+7\right)\left(\frac{x+5}{2}-\frac{4x}{3}\right)=0\)
TH1 : \(x+7=0\Leftrightarrow x=-7\)
TH2 : \(\frac{3x+15}{6}-\frac{8x}{6}=0\Leftrightarrow\frac{-5x+15}{6}=0\Leftrightarrow x=3\)
c, \(\left(4x+3\right)\left(\frac{3x+7}{4}-\frac{x-3}{12}\right)=0\)
\(\Leftrightarrow\left(4x+3\right)\left(\frac{9x-21}{12}-\frac{x-3}{12}\right)=0\)
TH1 : \(4x+3=0\Leftrightarrow x=-\frac{3}{4}\)
TH2 : \(\frac{9x-21-x+3}{12}=0\Leftrightarrow8x-18=0\Leftrightarrow x=\frac{9}{4}\)
d, \(\left(2x+1\right)\left(1-x\right)+2x=2\Leftrightarrow\left(2x+1\right)\left(1-x\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-x\right)-2\left(1-x\right)=0\Leftrightarrow\left(1-x\right)\left(2x-1\right)=0\Leftrightarrow x=1;x=\frac{1}{2}\)
e, \(\left(x-2\right)\left(x^2-3x+5\right)=x^3-2x^2\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+5\right)-x^2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-3x+5\right)=0\Leftrightarrow x=2;x=-\frac{5}{3}\)