Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Thay P=-4 vào P, ta được:
\(-\sqrt{x}=-4x-4\sqrt{x}-4\)
\(\Leftrightarrow4x+3\sqrt{x}+4=0\)
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
A= -x+\(4\sqrt{x}\)+5
A= -x+\(4\sqrt{x}\)-4+9
A= -(x-\(4\sqrt{x}\)+4)+9
A=-(\(\sqrt{x}\)-2)2 +9 ≤9
Dấu "=" xẩy ra khi -(\(\sqrt{x}\)-2)=0
=> x=4
Vậy Max A=9 khi x=4
B=15-x+6\(\sqrt{x}\)
B= -x+6\(\sqrt{x}\)-9+24
B=-(\(\sqrt{x}\)-3)2+24
Dấu "=" xẫy ra khi x=9
Vậy Max B = 24 khi x= 9
a: Ta có: \(A=\dfrac{2x-3\sqrt{x}-14}{x-7\sqrt{x}+12}-\dfrac{\sqrt{x}+4}{\sqrt{x}-3}-\dfrac{\sqrt{x}-1}{\sqrt{x}-4}\)
\(=\dfrac{2x-3\sqrt{x}-14-x+16-x+4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\)
Ta có: \(B=\dfrac{x-2\sqrt{x}+1}{x-4\sqrt{x}+3}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)
b: Ta có: M=A:B
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(=\dfrac{1}{\sqrt{x}-4}\)
Bài 2:
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{x}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Bài 5:
a: Để đây là hàm số bậc nhất thì m+5<>0
hay m<>-5
36B
37C
38D
39B
40D
41A
42B
43B
44A
45B
46B
47A
48C
50B
51B
52B
53D
54C
55D
56C
Câu 3:
Ta thấy $\Delta'=(m^2+2)^2+2m^2+5>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm pb với mọi $m$
Áp dụng định lý Viet:
$x_1+x_2=-2(m^2+2)$
$x_1x_2=-2m^2-5$
$\Rightarrow x_1x_2+1=x_1+x_2$
$\Leftrightarrow (x_1-1)(x_2-1)=0$
$\Leftrightarrow x_1=1$ hoặc $x_2=1$
Nếu $x_2=1$ thì $x_1=(-2m^2-5):x_2=-2m^2-5$
Mà $x_1>x_2$ nên $-2m^2-5>1$ (vô lý)
Do đó $x_1=1$. Khi đó $x_2=-2m^2-5$
Ta có:
$x_1x_2+8x_1^3+5=0$
$\Leftrightarrow -2m^2-5+8+5=0$
$\Leftrightarrow 8=2m^2$
$\Leftrightarrow m^2=4\Leftrightarrow m=\pm 2$