Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi v là vận tốc học sinh ban đầu
v' là vận tốc khi tăng tốc để đến đúng dự định
thời gian đi theo dự đinh là \(t_1=\frac{s}{v}=\frac{6}{v}\)
quãng đường thực thực tế đi là : .6 + 1/4.6 +6=9
thời gian thực tế đi là : \(t_2=\frac{s_2}{v}=\frac{9}{v}\)
ta có :
\(\frac{6}{v}=\frac{9}{v}-\frac{1}{4}\Leftrightarrow\frac{1}{4}=\frac{3}{v}\Leftrightarrow v=12\) (km/h)
b/ thời gian thực tế là :
\(\frac{7,5}{v'}+\frac{1,5}{v}\)
cho thời gian thực tế bằng thời gian dự định nên có :
\(\frac{6}{v}=\frac{7,5}{v'}+\frac{1,5}{v}\Leftrightarrow\frac{4,5}{v}=\frac{7,5}{v'}\Leftrightarrow\frac{4,5}{12}=\frac{7,5}{v'}\Leftrightarrow v'=20\)
Bài 2:
a) từ 7h -> 9h người đi bộ đi được số km là : 4 x 2 =8 (km)
tư 9h -> 10h người đi bộ đi được thêm 4 x 1 = 4 (km)
vậy trông khoảng thời gian từ 7h->9h người đi bộ đi được tổng số km là:
8+4=12
cũng nhận thấy sau 1h, có nghĩa là từ 9h-> 10h, người đi xe đạp đi được số km là: 12 x 1 =12 (km)
vậy 2 người gặp nhau luc 10h
nơi gặp nhau cách A 12 km
b) gọi t là thời gian 2 người cách nhau 2 km (t>0)
theo phần a ta tính được đọ dài của quãng đương AB là :
12+12=24 (km)
sau t giờ thì người đi bộ đi được số km là: 4t (km)
sau t giờ người đi xe đạp đi được số km là :12t (km)
vậy ta sẽ có tổng quãng đường mà người đi bộ và người đi xe đạp đi được là
4t + 12t (km)
sau t giờ 2 người cách nhau 2 km có nghĩa :
4t + 12t = 24- 2
<=>16t = 22
<=> t =1.375 (h)
=> lúc đó là 1.375 + 7 = 8.375 (giờ)
vậy lúc 8.375h hai người cách nhau 2km
Bài 3:
a)Đổi : 15p = 1/4h, 30p = 1/2 h
Thời gian An đi là từ A đến B là:
6 : 12 = 1/2 (h)
Thời gian Bình đi từ A đến B là:
1/2 + 1/2 - 1/4 = 3/4 (h)
Vận tốc của Bình là:
6 : 3/4 = 8 (km/h)
b) Để đến nơi cùng lúc với An, Bình phải đi tới B với thời gian là :
1/2 - 1/4 = 1/4 (h)
Vậy Bình phải đi với vận tốc là :
6 : 1/4 = 24 (km/h)
a) Quãng đường AB dài:
\(\dfrac{360}{60}.6=36\left(km\right)\)
Vận tốc mà thuyền đi ngược dòng từ AB đến B:
\(v=\dfrac{s}{t_1}=\dfrac{36}{6}=6\left(km/h\right)\)
Vận tốc đi ngược xuôi của thuyền:
\(6+\left(2.2\right)=10\left(km/h\right)\)
Thời gian thuyền đi từ B về A:
\(v=\dfrac{s}{t_2}\Rightarrow t_2=\dfrac{s}{v}=\dfrac{36}{10}=3,6\left(h\right)\)
Vậy tổng thời gian thuyền đến B rồi quay về A là:
\(t_1+t_2=6+3,6=9,6\left(h\right)\)
b) Quãng đường mà thuyền đi được trong 45 phút:
\(v=\dfrac{s}{t}\Rightarrow s=v.t=2.\dfrac{3}{4}=1,5\left(km\right)\)
Quãng đường còn lại xe đi trong:
\(v=\dfrac{s}{t}\Rightarrow t=\dfrac{s}{v}=\dfrac{\left(36-1,5\right)}{10}=3,45\left(h\right)\)
Tổng thời gian xe đi về A:
\(\dfrac{3}{4}+3,45=4,2\left(h\right)\)
a)ta có:
đi từ A đến B:
\(\left(v_t+v_n\right)t_1=6\)
\(\Leftrightarrow v_t+v_n=6\left(1\right)\)
đi từ B về A:
\(\left(v_t-v_n\right)t_2=6\)
\(\Leftrightarrow1,5v_t-1,5v_n=6\left(2\right)\)
từ hai phương trình (1) và (2) ta có:
vt=5km/h
vn=1km/h
b)ta có:
muốn thời gian đi B về A trong 1h thì:
\(\left(v_t'-v_n\right)t=6\)
\(\Leftrightarrow v_t'-1=6\)
từ đó ta suy ra vt'=7km/h
-vận tốc của thuyền với nc là
- Vận tốc của nước với bờ là
Vxuôi.dòng =
Vngược.dòng =
=> >
<=> <
=> nước chảy theo chiều từ A->B
____________
b)
Vxuôi.dòng =
<=> =
<=> = 6 (1)
Vngược.dòng =
<=> =4 (2)
kết hợp (1) , (2) giải hệ pt => V1=5... V2=1
Ta có: vx= vcano + v nước= 30+ vnước
vn = vcano - vnước = 30 - vnước
Sđi = t.vnước = 2.30 +vnước =60 + vnước
Svề = t. vnuớc = 3.30- vnước = 90 - vnước
=> 60+ vnước = 90 -vnước
=> 2vnước =30
=> vnước = 15 km/h
=> SAB = t.vthực = t.( vcano + vnước) = 2. (30+15) = 2.45 = 90 km
Bình về sớm hơn vì thuyền không chỉ có vẫn tóc chèo thuyền mà còn được dòng nước đẩy đi