K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

A B C D E F I 1 2 1

Cm: a) Xét t/giác ADB và t/giác EDB

có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)

      BD : chung

    \(\widehat{B_1}=\widehat{B_2}\)(gt)

=> t/giác ADB = t/giác EDB (ch - gn)

=> AB = BE ; AD = ED (các cặp cạnh t/ứng)

+) AD = ED => D thuộc đường trung trực của AE

+) AB = BE => B thuộc đường trung trực của AE

mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE 

b) Xét t/giác ADF và t/giác EDC

có:  \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)

       AD = DE (cmt)

   \(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

=> t/giác ADF = t/giác EDC (g.c.g)

=> DF = DC (2 cạnh t/ứng)

c) Ta có: AD < DF (cgv < ch)

Mà DF = DC (cmt)

=> AD < DC 

d) Xét t/giác ABC có AB > AC 

=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)

=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)

hay \(\widehat{ICB}>\widehat{B_2}\)

=> BI > IC (quan hệ giữa góc và cạnh đối diện)

a) Xét tam giác vuông BED và tam giác vuông BAD ta có :

ABD = EBD ( BD là pg ABC )

BD chung

=> Tam giác BED = tam giác BAD ( ch-gn)

=  >AD = DE( tg ứng)

b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :

AD = DE (cmt)

ADF = EDC ( đối đỉnh)

=> Tam giác AFD = tam giác EDC ( cgv-gn)

=> DF = DC (dpcm)

c) Xét tam giác vuông DEC có 

DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)

Mà AD = DE (cmt)

=> AD < DC

d) chịu

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

 
 
 
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

31 tháng 7 2019
Mọi người trả lời giùm minh đi minh đang có viêc gâp
1 tháng 8 2019

A B C D E F

a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)

b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2

Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:

\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)

\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)

Theo đề bài ta có AB = AC = 10 < BC = 12

Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)

c) Hướng dẫn:

\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)

Suy ra EB = FC. Từ đó suy ra AE = AF. 

Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)

Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) suy ra đpcm

1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABHb, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHAc, tia BI cắt AC ở E . chứng minh  tam giác ABE đều d, chứng minh  DC >DB2 TAM GIÁC ABC  VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở Ka, BIẾT AC = 8cm...
Đọc tiếp

1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHA

c, tia BI cắt AC ở E . chứng minh  tam giác ABE đều 

d, chứng minh  DC >DB

2

 TAM GIÁC ABC  VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở K

a, BIẾT AC = 8cm AB=6cm . TÍNH BC 

b, TAM GIÁC ABK LÀ TAM GIÁC GÌ

c, CHỨNG MINH DK VUÔNG BC .

d, KẺ AE VUÔNG BC. CHỨNG MINH AK LÀ TIA PHÂN GIÁC  CỦA GÓC HAC

3

 CHO TAM ABC CÓ AB=3cm AC=4cm BC=5cm

a, TAM GIÁC ABC LÀ TAM GIÁC GÌ

b, VẼ BD LÀ PHÂN GIÁC CỦA GÓC B. TRÊN CẠNH BC LẤY DIỂM ED TẠI F. CHỨNG MINH AE SONG SONG FC

c, CHỨNG MINH TAM GIÁC ABH = TAM GIÁC ACH


b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD  tại  I . chứng minh tam giác AIB =tam giác BHA

c, tia BI cắt AC ở E . chứng minh  tam giác ABE đều 

d, chứng minh  DC >DB

 

GIÚP MIK LÀM 3 BÀI NÀY NHA MÌNH CẢM ƠN

0