Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Phương trình tương đương với \(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\) hay \(x^2-2x-2=0\) hoặc \(x^2+5x-2=0\). Đến đây sử dụng Delta hoặc viết hai phương trình dưới dạng \(\left(x-1\right)^2=3,\left(2x+5\right)^2=33\) ta được bốn nghiệm là \(x=1\pm\sqrt{3},-\frac{5}{2}\pm\frac{\sqrt{33}}{2}\)
b. Phương trình tương đương với \(3\left(x+5\right)\left(x+6\right)\left(x+9\right)=8x+6\left(x+5\right)\left(x+6\right)\leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+9\right)=\left(x+9\right)\left(6x+20\right)\)
hay \(\left(x+9\right)\left(3x^2+27x+70\right)=0\leftrightarrow x=-9.\)
1.
2x - x2 - 10
= - (x2 - 2x + 10)
\(=\left[\left(x^2-2x+1\right)+9\right]\)
= - (x - 1)2 - 9
Vì - (x - 1)2 \(\le\) 0 vs mọi x và - 9 < 0
nên - (x - 1)2 - 9 < 0
hay 2x - x2 - 10 < 0
Tìm MIN :
a) \(9x^2-4x+11=\left(3x\right)^2-2.3x.\frac{4}{6}+\frac{4}{9}-\frac{95}{9}\)
\(=\left(3x-\frac{4}{6}\right)^2-\frac{95}{9}\ge\frac{95}{9}\)
Dấu "=" xảy ra \(\Leftrightarrow x=?\)
\(2x-x^2-10=-\left(x^2-2x+1\right)+9=-\left(x-1\right)^2+9\ge0\)
tiếp :
\(\left(x+3y\right)^2-12\left(x+3y\right)+36+\left(y+51\right)^2-2601\)
\(=\left(x+3y-6\right)^2+\left(y+51\right)^2-2601\)
MinA = - 2601 tại y = -51 và x = 159