K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMAB và ΔMCK có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMK}\)(hai góc đối đỉnh)

MB=MK(gt)

Do đó: ΔMAB=ΔMCK(c-g-c)

Suy ra: AB=CK(hai cạnh tương ứng)

Ta có: ΔMAB=ΔMCK(cmt)

nên \(\widehat{MAB}=\widehat{MCK}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MCK}=90^0\)

\(\Leftrightarrow CK\perp CM\) tại C

hay CK\(\perp\)AC(Đpcm)

b) Xét ΔANC và ΔBNI có 

AN=BN(N là trung điểm của AB)

\(\widehat{ANC}=\widehat{BNI}\)(hai góc đối đỉnh)

NC=NI(gt)

Do đó: ΔANC=ΔBNI(c-g-c)

Suy ra: \(\widehat{ACN}=\widehat{BIN}\)(hai góc tương ứng)

mà \(\widehat{ACN}\) và \(\widehat{BIN}\) là hai góc ở vị trí so le trong

nên AC//BI(Dấu hiệu nhận biết hai đường thẳng song song)

Xét ΔAMK và ΔCMB có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMK}=\widehat{CMB}\)(hai góc đối đỉnh)

MK=MB(gt)

Do đó: ΔAMK=ΔCMB(c-g-c)

Suy ra: \(\widehat{AKM}=\widehat{CBM}\)(hai góc tương ứng)

mà \(\widehat{AKM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong

nên AK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

16 tháng 2 2021

Thank you so much! Cảm ơn bạn nha!hihi

15 tháng 2 2018

xét tam giác ABM và tam giác CMK 

AM = MC ( M là trung điểm của AC)

BM=MK 

góc AMB =góc CMK 

=> tam giác ABM và tam giác CMK( c.g.c)

=>goc BAC = goc ACK ( hai canh tuong ung )

ma goc BAC = 900

​=> góc ACK= 900

21 tháng 2 2018

mình đã trả lời hết các câu rồi nhưng mình ko may nhấn vào trang khác trên màn hình nên khi trả về thì không còn nên mình chỉ làm câu a cho mình xin lỗi nhưng nếu bạn còn cần thì mình  giải ngày cho .cảm ơn bạn

20 tháng 6 2017

Bài 1 :

Xét tam giác ABC và ADE có :

           góc EAD = góc CAB (đối đỉnh)

           CA=EA (gt)

            BA=DA (gt)

suy ra tam giác ABC=ADE (c.g.c)

suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )

        Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM

Xét tam giác ENA và CMA có:

         EN = CM ( cmt)

         góc E = góc C (cmt)

         AE = AC (gt)

suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng ) 

Xét tam giác NDA và MBA có:

            góc D= góc B (cmt)

            ND = MB (cmt )

            DA = BA (cmt )

suy ra tam giác NDA = MBA (c.g.c)suy ra  góc NAD =  góc MAB

   Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )

   Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ

suy ra 3 điểm M,A,N thẳng hàng          (2)

                   Từ (1) và (2 ) suy ra A là trung điểm của MN

( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)

Bài 3: 

Xét ΔHMB vuông tại H và ΔKMC vuông tại K có

MB=MC

\(\widehat{HMB}=\widehat{KMC}\)

Do đo: ΔHMB=ΔKMC

Suy ra: BH=CK

27 tháng 2 2020

A B C M N K I 1 2 1 2

A) XÉT \(\Delta BAM\)\(\Delta KCM\)

       \(AM=CM\left(GT\right)\)

       \(\widehat{M_1}=\widehat{M_2}\left(Đ/Đ\right)\)

      \(BM=KM\left(GT\right)\)

\(\Rightarrow\Delta BAM=\Delta KCM\left(C-G-C\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{KCM}=90^o\)hai góc tương ứng

HAY \(\widehat{ACK}=90^o\)

b) XÉT \(\Delta IBN\)\(\Delta CAN\)

         \(IN=CN\left(GT\right)\)

         \(\widehat{N_1}=\widehat{N_2}\left(Đ/Đ\right)\)

      \(BN=AN\left(GT\right)\)

\(\Rightarrow\Delta IBN=\Delta CAN\left(C-G-C\right)\)

\(\Rightarrow\widehat{IBN}=\widehat{CAN}=90^o\)hai góc tương ứng

hai góc này ở vị trí SO LE TRONG BẰNG NHAU

\(\Rightarrow IB//AC\left(đpcm\right)\)

\(\widehat{BAM}=\widehat{KCM}=90^o\)

HAY\(\widehat{BAC}=\widehat{ACK}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow AK//BC\left(đpcm\right)\)

C)VÌ\(\widehat{IBN}=\widehat{CAN}=90^o\)

HAY\(\widehat{IBA}=\widehat{BAC}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow IA//BC\left(1\right)\)

\(AK//BC\left(CMT\right)\left(2\right)\)

TỪ (1)VÀ (2) => I,A,K THẲNG HÀNG

bài 1: cho tam giác ABC cân tại A. kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. BD và CE cắt nhau tại Ia. chứng minh tam giácBDC=tam giác CEBb.so sánh góc IBE và góc ICD c. đường thẳng AI cắt BC tại H. chứng minhAI vuông góc với BC tại Hbài 2: cho tam giác ABC. gọi M,N lần lượt là trung điểm của các cạnh AC,AB. trên các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung điểm BD và...
Đọc tiếp

bài 1: cho tam giác ABC cân tại A. kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. BD và CE cắt nhau tại I

a. chứng minh tam giácBDC=tam giác CEB

b.so sánh góc IBE và góc ICD 

c. đường thẳng AI cắt BC tại H. chứng minhAI vuông góc với BC tại H

bài 2: cho tam giác ABC. gọi M,N lần lượt là trung điểm của các cạnh AC,AB. trên các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung điểm BD và N là trung điểm EC. chứng minh ba điểm E,A,D thẳng hàng

bài 3: 1. vẽ 1tam giác vuông ABC có góc A =90 độ,AC =4cm, góc C = 60 độ 

2.trên tia đối của tia AC lấy điểm D sao cho AD=AC

a. chứng minh tam giácABD=tan giác ABC

b. tam giác BCD có dạng đặc biệt nào? vì sao?

c. tính độ dài các đoạn thẳngBC,AB

bài 4: cho hai đoạn thẳng AC và BD cắt nhau tại trung điểm O của mỗi đoạn. trên tia AB lấy điểm M sao cho B là trung điểm AM, trêb tia AD lấy điểm N sao cho D là trung điểm AN. chứng minh ba điểm M,C,N thẳng hàng 

bài 5: cho tam giác ABCvuông ở A có AB =3cm,AC=4cm

a.tính độ dài cạnh BC

b.trên tia đối của tia AC lấy điểm D sao cho AD=AB. tam giác ABD có dạng đặc biệt nào ? vì sao

c. lấy trên tia đối của tia AB điểm E sao cho AE=AC. chứng minh DE=BC

bài 6: cho góc nhọn xOy. Gọi I là 1 điểm thuộc tia phân giác của góc xOy. kẻ IA vuông góc với Ox (điểm A thuộc tia Ox) và IB vuông góc với Oy (điểm B thuộc tia Oy)

a. chứng minh IA=IB

b.cho biết OI=10cm, AI=6cm. tính OA

c. gọi K là giao điểm của BI và Ox và M là giao điểm của AI với Oy. so sánh AK và BM?

d. gọi C là giao điểm của OI và MK. chứng minh OC vuông góc với MK

bài 7: cho tam giác ABC cân ở A. trên cạnh AB lấy điểm M, trên tia đối của CA lấy điểm N sai cho BM =CN. gọi K là trung điểm MN. chứng minh ba điểm B,K,C thẳng hàng

bài 8: cho tam giác ABC cân ở A, BAC =108°. Gọi O là 1 điểm nằm trên tia phân giác của góc C sao cho góc CBO=12°. vẽ tam giác đều BOM (  M và A cùng thuộc 1 nửa mặt phẳng bờ BO). chứng minh  3 điểm C,A,M thẳng hàng

mấy bạn giải giùm mình nha. mình cần gấp lắm . thanks mí bạn ngìu nhoak.

 

3
29 tháng 2 2016

Hơi nhiều quá đấy bạn , có bài bạn phải biết làm chứ đâu phải tất cả các bài bạn không biết đâu 

1 tháng 3 2016

mình xin lỗi mjinhf copy qua nên ko để ý

a: Xét ΔBMC và ΔKMA có 

BM=KM

\(\widehat{BMC}=\widehat{KMA}\)

MC=MA

Do đó: ΔBMC=ΔKMA

b: Ta có: ΔBMC=ΔKMA

nên \(\widehat{CBM}=\widehat{AKM}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BC//AK