K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2

<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0

<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0

<=> x4 - x3 - x2 - 5x - 2 = 0 

26 tháng 3 2017

\(\frac{3-x+x}{3-x}=\frac{5x\left(x+2\right)+2\left(x+2\right)\left(3-x\right)}{\left(x+2\right)^2\left(3-x\right)}\)

\(\frac{3}{3-x}=\frac{\left(5x+2\left(3-x\right)\right)\left(x+2\right)}{\left(x+2\right)^2\left(3-x\right)}\)

\(\frac{3}{3-x}=\frac{5x+2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}\)

\(\frac{3}{3-x}=\frac{5x}{\left(x+2\right)\left(3-x\right)}+2\)

\(\frac{3}{3-x}-2=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)

\(\frac{3-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)

\(3-2X\left(3-x\right)=5x\)

\(3-6+2x=5x\)

chị có thể tự giải tiếp ạ

e là hs lớp 7

6 tháng 4 2017

cảm ơn e "dang long vu'' chị làm xong thấy cái j nó sai sai nhưng k biết sai chỗ nào nên muốn dò lại bài thôi cảm ơn e nha 

9 tháng 2 2020

\(\left(x+1\right)^2-\left(x-1\right)^2=6\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x+1+x-1\right)\left(x+1-x+1\right)=6\left(x^2+x+1\right)\)

\(\Leftrightarrow2x.2=6x^2+6x+6\)

\(\Leftrightarrow4x=6x^2+6x+6\)

\(\Leftrightarrow6x^2+2x+6=0\)

Ta có \(\Delta=2^2-4.6.6< 0\)

Vậy pt vô nghiệm

9 tháng 2 2020

\(\left(x+1\right)^2-\left(x-1\right)^2=6\left(x^2+x+1\right)\)

\(\Leftrightarrow\left[\left(x+1\right)-\left(x-1\right)\right].\left[\left(x+1\right)+\left(x-1\right)\right]=6\left(x^2+x+1\right)\)

\(\Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=6x^2+6x+6\)

\(\Leftrightarrow2.2x=6x^2+6x+6\)\(\Leftrightarrow4x=6x^2+6x+6\)

\(\Leftrightarrow6x^2+2x+6=0\)\(\Leftrightarrow3x^2+x+3=0\)( vô nghiệm vì \(1^2< 4.3.3\)hay \(1< 36\)

Vậy tập nghiệm của phương trình là \(S=\varnothing\)

12 tháng 3 2017

\(\Leftrightarrow5+3x^2+9x< 3x^2+6x-x-2\)

\(\Leftrightarrow9x-6x+x< 3x^2-3x^2-5-2\)

\(\Leftrightarrow2x< -7\)

\(\Leftrightarrow x< \frac{-7}{2}\)

15 tháng 7 2021

`|x-2|=2x-3(x>=3/2)`

`<=>` \(\left[ \begin{array}{l}x-2=2x-3\\x-2=3-2x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=1(l)\\3x=5\end{array} \right.\) 

`<=>x=5/3(Tm(`

`2)A=-x^2+2x+9`

`=-(x^2-2x)+9`

`=-(x^2-2x+1)+1+9`

`=-(x-1)^2+10<=10`

Dấu "=" xảy ra khi `x=1.`

15 tháng 7 2021

1,

\(|x-2|=x-2< =>x\ge2\)

\(=>x-2=2x-3< =>x=1\left(ktm\right)\)

*\(\left|x-2\right|=2-x< =>x< 2\)

\(=>2-x=2x-3< =>x=\dfrac{5}{3}\left(tm\right)\)

vậy x=5/3

2, \(A=-x^2+2x+9=-\left(x^2-2x-9\right)=-\left(x^2-2x+1-10\right)\)

\(=-\left[\left(x-1\right)^2-10\right]=-\left(x-1\right)^2+10\le10\)

dấu"=" xảy ra<=>x=1

5 tháng 10 2021

a) \(=x^3-\dfrac{1}{27}-x^2+\dfrac{2}{3}x-\dfrac{1}{9}=x^3-x^2+\dfrac{2}{3}x-\dfrac{2}{27}\)

b) \(=x^6-6x^4+12x^2-8-x^3+x+x^2-3x=x^6-6x^4-x^3+13x^2-2x-8\)

e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

5 tháng 3 2017

\(giải:\)

\(1,\)\(\frac{x}{5}+\frac{2x+1}{3}=\frac{x-5}{15}\)

\(\Leftrightarrow\frac{x}{5}+\frac{2x+1}{3}-\frac{x-15}{15}=0\)

\(\Leftrightarrow\frac{3x}{15}+\frac{5\left(2x+1\right)}{15}-\frac{x-15}{15}=0\)

\(\Leftrightarrow\frac{3x+5\left(2x+1\right)-\left(x-15\right)}{15}=0\)

\(\Leftrightarrow\frac{3x+10x+5-x+15}{15}=0\)

\(\Leftrightarrow\frac{12x+20}{15}=0\)

\(\Rightarrow12x+20=0\)

\(\Leftrightarrow12x=-20\Leftrightarrow x=\frac{-5}{3}\)

vậy tập nghiệm của phương trình là \(s=\left[\frac{-5}{3}\right]\)

\(2,\)\(\left(x^3-64\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-4^3\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16\right)+6x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+16+6x\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+10x+16\right)=0\)

 \(mà\)\(x^2+10x+16>0\)

\(\Rightarrow x-4=0\Rightarrow x=4\)

vậy x=4 là nghiệm của phương trình

\(3,\)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{x^2-4}\)

\(\Leftrightarrow\frac{x+2}{x-2}-\frac{x-2}{x+2}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{16}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=16\)\

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-16=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-16=0\)

\(\Leftrightarrow8x-16=0\)

\(\Leftrightarrow8\left(x-2\right)=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

vậy x=2 là nghiệm của phương trình