Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
ĐKXĐ: \(x\ge2\)
\(S=-\frac{1}{2}\left(x-1-2\sqrt{x-2}+x+5-4\sqrt{x+1}\right)+12\)
\(=-\frac{1}{2}\left[\frac{\left(x-3\right)^2}{x-1+2\sqrt{x-2}}+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}\right]+12\le12\)
\(S_{max}=12\) khi \(x=3\)
a) \(1+\sqrt{3}+\sqrt{5}+\sqrt{15}\)
\(=\left(1+\sqrt{3}\right)+\sqrt{5}\left(1+\sqrt{3}\right)\)
\(=\left(1+\sqrt{3}\right)\left(1+\sqrt{5}\right)\)
b) \(\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}\)
\(=\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{7}\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{7}\right)\)
c) \(\sqrt{35}-\sqrt{15}+\sqrt{14}-\sqrt{6}\)
\(=\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{2}\right)\)
e) \(xy+y\sqrt{x}+\sqrt{x}+1\)
\(=y\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}+1\right)\left(y\sqrt{x}+1\right)\)
g) \(3+\sqrt{x}+9-x\)
\(=\left(3+\sqrt{x}\right)+\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)\)
\(=\left(3+\sqrt{x}\right)\left(4-\sqrt{x}\right)\)
6.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)
4.
ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)
\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)
\(\Leftrightarrow3t^2-7t+34=0\)
Phương trình vô nghiệm
5.
ĐKXĐ: ...
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:
\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)
\(\Leftrightarrow2x=4\Rightarrow x=2\)
\(x=\sqrt{x^2-2x+5}=\sqrt{x^2-2x+1+4}\\ =\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)
dấu "=" xảy ra khi x=1
vậy min x=2 khi x=1
\(y=\sqrt{\dfrac{x^2}{4}-\dfrac{x}{6}+1}=\sqrt{\left(\dfrac{x}{2}\right)^2-2.\dfrac{x}{2}.\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{35}{36}}\\ =\sqrt{\left(\dfrac{x}{2}-\dfrac{1}{6}\right)^2+\dfrac{35}{36}}\ge\sqrt{\dfrac{35}{36}}\)
dấu "=" xảy ra khi \(\dfrac{x}{2}-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{3}\)
vậy min y =\(\sqrt{\dfrac{35}{36}}\) tại \(x=\dfrac{1}{3}\)
1) ĐK: x \(\ge\)1; y \(\ge\)2
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\)\(\sqrt{\frac{a+b}{2}}\) (cho 2 sô a;b > 0) ta co:
\(\frac{A}{2}\le\sqrt{\frac{x-1+y-2}{2}}=\sqrt{\frac{4-3}{2}}=\sqrt{\frac{1}{2}}\)
\(A=\sqrt{\frac{1}{2}}.2=\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1=y-2\\x+y\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=\frac{3}{2}\\y=\frac{5}{2}\end{matrix}\right.\)
2) ĐK: x \(\ge\)1; y \(\ge\)2
Áp dụng bđt AM-GM cho 2 số dương ta có:
\(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{1.\left(x-1\right)}}{x}\le\frac{1+x-1}{2x}=\frac{1}{2}\)
\(\frac{\sqrt{y-2}}{y}=\frac{\sqrt{2.\left(y-2\right)}}{\sqrt{2}.y}\le\frac{2+y-2}{\sqrt{2}.2y}=\frac{1}{\sqrt{2}.2}\)
\(B=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}\)\(\le\frac{1}{2}+\frac{1}{\sqrt{2}.2}=\frac{2}{4}+\frac{\sqrt{2}}{4}=\frac{2+\sqrt{2}}{4}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1=1\\y-2=2\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Áp dụng bđt \(\sqrt{a}+\sqrt{b}\le\sqrt{a+b}\)
\(S=\sqrt{x-10}+\sqrt{14-x}\le\sqrt{\left(x-10\right)+\left(14-x\right)}=\sqrt{4}=2\)
Dấu "=" xảy ra <=> \(\left(x-10\right)\left(14-x\right)\ge0\Leftrightarrow10\le x\le14\)
Vậy \(S_{max}\) = 2 tại \(10\le x\le14\)
Mình ko chắc ko đúng ko tại mình mới học lớp 7
thật quá hồ đồ bĐT đó là
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\),nếu ko chắc chắn bn ko nên làm bừa như vậy