K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

4 tháng 7 2017

Chọn B

Phương pháp:

Chia khối lập phương, nhận xét các khối tạo thành và tính thể tích của chúng

Cách giải:

Chia khối lập phương ABC.A’B’C’ bởi mặt phẳng (AB’D’) và (C’BD) ta được:

+) Chóp A.A’B’D’

+) Chóp C’.BCD

+) Khối bát diện ABD.B’C’D’

Ta có

Các khối A.A’B’D’ và C’.BCD không phải là chóp tam giác đều và khối bắt diện ABD.B’C’D’ không phải là khói bát diện đều

Do đó chỉ có mệnh đề III đúng

3 tháng 8 2017

Chọn đáp án C.

14 tháng 3 2018

Đáp án C

Có 3 phương án đúng: i, iii, iv.

10 tháng 2 2018

Đáp án C

Ta có:  2 O D 2 = a 2 ⇒ O D = a 2

⇒ S O = O D tan 60 ∘ = a 2 . 3 = a 3 2

Gọi H là hình chiếu của N lên (ABCD) là trung điểm của OC.

Ta có: N H = S O 2 = a 6 4 ; S M B C = S A B C D = a 2  

V N . B C M = 1 3 N H . S M B C = 1 3 . a 6 4 . a 2 = a 3 6 12  

Ta có:

M D D C . C S C N . N P P M = 1 ⇔ 1.2. N P P M = 1 ⇔ N P P M = 1 2 ⇒ P M M N = 2 3  

Ta có: V M . D P Q V M . B C N = P M M N . M D M C . M Q M B = 2 3 . 1 2 . 1 2 = 1 6

⇒ V N p Q D C A = 5 6 V N . B C M = 5 6 . a 3 6 12 = 5 a 3 6 72

25 tháng 9 2018

Chọn đáp án A

Gọi O là tâm hình vuông ABCD, H  là trung điểm của AB

Mặt phẳng (ACM) chia khối chóp S.ABCD thành hai khối đa diện M.ACD có thể tích V1 và khối đa diện còn lại có thể tích V2

2 tháng 5 2018

4 tháng 10 2018

3 tháng 7 2017

4 tháng 3 2017

Đáp án C