Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,S_{xp}=4.\dfrac{a+2a}{2}.a=6a^2\)
\(b,\)Vẽ một mặt bên. Ta có:\(AH=\dfrac{AB-A^'B^'}{2}=\dfrac{2a-a}{2}=\dfrac{a}{2}\)
Trong tamn giác vuông A'HA:
\(AA^'=\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\sqrt{\dfrac{5a^2}{4}}\)
Từ đó tính tiếp sẽ ra chiều cao hình chóp
Đáp số :Độ dài cạnh bên là :\(\sqrt{\dfrac{5a^2}{4}}\)
Chiều cao chóp cụt :\(\sqrt{\dfrac{3a^2}{4}}\)
a) Chiều cao phần trên tháp:
\(19,2-12=7,2\left(m\right)\)
b) Thể tích hình hộp chữ nhật là:
\(V=S.h=\left(5\cdot5\right)\cdot12=300\left(m^3\right)\)
Thể tích hình chóp là:
\(V=\dfrac{1}{3}Sh=\dfrac{1}{3}\left(5\cdot5\right)\cdot7,2=60\left(m^3\right)\)
Thể tích tháp đồng hồ là:
\(300+60=360\left(m^3\right)\)
a) Chiều cao của phần trên của tháp đồng hồ:
19,2 - 12 = 7,2 (m)
b) Thể tích đáy:
5 . 5 . 12 = 300 (m³)
Thể tích phần trên của tháp:
5 . 5 . 7,2 : 3 = 60 (m³)
Thể tích của tháp đồng hồ:
300 + 60 = 360 (m³)
Hình bạn tự vẽ nha
a) CMR Tứ giác ABEC là hình bình hành
Vì ABCD là hcn (gt) => AB=CD và AB//CD (t/c hcn)
=> AB=CE và AB//CE ( CE= DC, E \(\in\) CD)
=> tứ giác ABEC là hình bình hành(dhnb)
b) BOCF là hình gì
Vì ABEC là hbh (cmt) => AC=BE và AB//BE 9T/c hbh)
=> 1/2 AC=1/2BE và OC//BF (1)
<=> OC= BF(2)
Từ (1) và (2) => BOCF là hbh (dhnb)
mà OB=OC (t/c đừng chéo hcn)
=> BOCF là hình thoi (dhnb)
c) DOFE là hình thang cân
Vì AC= BE ( ABEC là hbh)
mà AC =BD ( T/c hcn)
=> BE= BD => Tam giác BED cân tại B (đ/n)
=> BDE= BED (t/c tam giác cân) (1)
Vì C là trung điểm DE ( D đx E qua C) => BC là đường trung tuyến của tam giác ABC cân => BC là đương cao ( t/c các đường trong tam giác cân) => BC _l_ DE
mà BC_l_ OF (đg chéo hình thoi)
=> DE//OF ( từ _l_ -> //) (2)
Từ (1) và (2)=> OFDE là hình thang cân (dhnb hthang cân)
1.
a) D, \(\widehat{D}\)= 60o
b) B, Hình thang cân, hình thoi, hình vuông
Áp dụng định nghĩa của hình thang cân ta có: Mỗi mặt bên của hình chóp cụt đều là một hình thang cân.
Chọn đáp án C.