K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

24 tháng 4 2017

4 tháng 12 2018

8 tháng 12 2017

22 tháng 5 2016

\(W_{đt}=4W_{tt}\)\(\Leftrightarrow q=\frac{Q_0}{\sqrt{4+1}}=\frac{Q_0}{\sqrt{5}}\)\(\Rightarrow cos\varphi=\frac{1}{\sqrt{5}}\)\(\Rightarrow\varphi\approx63^o26'\)
\(\Rightarrow trong\) thời gian t: \(\varphi\Delta\approx26^033'\)
\(\Rightarrow t=\frac{T}{\frac{\Delta\varphi}{360}}=\frac{2\pi}{1000}\cdot\frac{800}{59}\approx0,0852s\)

25 tháng 1 2017

sai rồi

7 tháng 1 2020

Chu kì của dao động là:

\(T=\frac{2\pi}{\omega}=\frac{2\pi}{1000}=6,3.10^{-3}s\)

Vì tại t=0 i=0 nên thời điểm gần nhất mà năng lượng điện trường bằng 4 lần năng lượng từ trường khi góc \(\text{φ}=\frac{\pi}{6}\) .Thời gian để vật dao động đến vị trí góc

\(\text{φ }=\frac{\pi}{6}\)là:'

\(t=\frac{T}{12}=\frac{6,3.10^{-3}}{12}=5,25.10^{-4}s\)

29 tháng 12 2014

\(W_L+W_C = W_{Cmax}\)

mà \(W_{d} = 2 W_t\) => \(W_{Cmax} = \frac{3}{2}W_C=> \frac{1}{2}CU_0^2 = \frac{3}{2}.\frac{1}{2}Cu^2.\)

=> \(u^2 = \frac{2}{3}U_0^2=> u = \pm \frac{2\sqrt{2}}{\sqrt{3}} \approx \pm 1,63 V.\)

Chọn đáp án \(D.1,63V.\)

29 tháng 12 2014

Bạn có thể áp dụng công thức tổng quát

\(W_C = nW_L => W = (1+\frac{1}{n})W_C\)

=> \(U_0^2 = \frac{n+1}{n}u^2\)

=> \(u = \pm \sqrt{\frac{n}{n+1}}U_0.\)

11 tháng 1 2016

Sau khoảng thời gian ngắn nhất \(0,25 \mu s\) năng lượng điện trường và năng lượng từ trường => \(\frac{T}{4}= 0,25 \mu s=> T = 10^{-6}s=> \omega = \frac{2\pi}{T}= 2\pi.10^{6}(rad/s).\)

\(q_0 = \frac{I_0}{\omega} = \frac{2.10^{-8}}{\pi}C.\)

\(W_L=W_C = \frac{0,8}{\pi}.10^{-6}=> q = \pm \frac{q_0}{\sqrt{2}}.\)

Ta có: \(\frac{1}{2}\frac{q_0^2}{2C}=\frac{0,8}{\pi}.10^{-6}=> C = \frac{1,25.10^{-10}}{\pi}F = \frac{125}{\pi}pF.\)

20 tháng 5 2016

bạn giải đúng rồi nhưng mà đoạn cuối công thức là (1/2)*(q02/C) chứ ko phải là 2C. đáp án là D