Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này chỉ cần sử dụng công thức 2 giá trị của C để có cùng 1 giá trị của $U_C$ :
$U_C=U_{C_{max}} \cos \left(\dfrac{\varphi _1-\varphi _2}{2} \right)$
$\Rightarrow U_{C_{max}}=\dfrac{60}{\cos \dfrac{\pi }{6}}=40\sqrt{3} V$
Khi $U_{C_{max}}$ ta có:
$P=\dfrac{U^2}{R}\cos ^2\varphi _3=P_{max}\cos ^2\varphi _3=\dfrac{P_{max}}{2}$
$\Rightarrow \cos \varphi _3=\dfrac{\sqrt{2}}{2}$
Vẽ giản đồ suy ra: $U=\dfrac{U_{C_{max}}}{\sqrt{2}}=20\sqrt{6}\left(V \right)$
Mạch LC có i vuông qua với q nên:
\((\dfrac{i}{I_0})^2+(\dfrac{q}{Q_0})^2=1\)\(\Rightarrow (\dfrac{i}{\omega Q_0})^2+(\dfrac{q}{Q_0})^2=1\)
\(\Rightarrow (\dfrac{i_1}{\omega Q_0})^2+(\dfrac{q_1}{Q_0})^2=1\)
\((\dfrac{i_2}{\omega Q_0})^2+(\dfrac{q_2}{Q_0})^2=1\)
\(\Rightarrow (\dfrac{i_1}{\omega })^2+(q_1)^2=(\dfrac{i_2}{\omega })^2+(q_2)^2\)
\(\Rightarrow \omega ^2=\dfrac{i_1^2-i_2^2}{q_2^2-q_1^2}\)
\(\Rightarrow T=\dfrac{2\pi}{\omega}=2\pi.\sqrt{\dfrac{q_2^2-q_1^2}{i_1^2-i_2^2}}\)
\(\Rightarrow \lambda = c.T =2\pi c.\sqrt{\dfrac{q_2^2-q_1^2}{i_1^2-i_2^2}}\)
Chọn B.
C thay đổi để Uc max thì điện áp uRL vuông pha với u. Ta có giản đồ véc tơ sau:
i U U U=30 O M N J RL C U = 32 L
Xét tam giác vuông OMN:
\(ON^2=NJ.NM\Rightarrow 30^2=(U_C-32).U_C\)
\(\Rightarrow U_C^2-32U_C-30^2=0\)
Giải PT ta được \(U_C=50V\)
Chọn D.
Đặt một điện áp xoay chiều với giá trị hiệu dụng U= 30V vào hai đầu đoạn mạch R, L, C mắc nối tiếp có điện dung C thay đổi được. Khi điện áp hiệu dụng giữa hai bản tụ điện đạt giá trị cực đại UCmax thì hiệu điện thế hiệu dụng giữa hai đầu cuộn cảm là UL = 32V. Giá trị UCmax là
A. 18V
B. 25V
C. 40V
D. 50V
\(Z_C=40\Omega\)
Đoạn mạch AM có: \(\tan\varphi_{AM~i}=\frac{-Z_C}{R_1}=-1\)\(\Rightarrow\varphi_{AM~i}=-\frac{\pi}{4}\)\(\Rightarrow\varphi_{AM}-\varphi_i=-\frac{\pi}{4}\Rightarrow\varphi_i=\varphi_{AM}+\frac{\pi}{4}=-\frac{7\pi}{12}+\frac{\pi}{4}=-\frac{\pi}{3}\)
\(u_{AB}\) là tổng hợp của \(u_{AM}\) và \(u_{MB}\) nên: \(u_{AB}=221\cos\left(100\pi t-0,587\right)\)(Tổng hợp bằng máy tính) \(\Rightarrow\varphi_{AB}=-0,587\)
Như vậy, độ lệch pha của \(u_{AB}\) đối với \(i\)là: \(\varphi=\varphi_{AB}-\varphi_i=-0,587+\frac{\pi}{3}=0,46\)
Hệ số công suất \(\cos\varphi=\cos0,46=0,896\)
Do E và B biến thiên cùng pha nên, khi cảm ứng từ có độ lớn B0/2 thì điện trường E cũng có độ lớn E0/2.
Bài toán trở thành tính thời gian ngắn nhất để cường độ điện trường có độ lớn E0/2 đang tăng đến độ lớn E0/2.
E M N Eo Eo/2
Từ giản đồ véc tơ quay ta dễ dang tính được thời gian đó là t = T/3
Suy ra: \(t=\dfrac{5}{3}.10^{-7}\)s
\(Z_{L1}=\omega_1.L=30\) (1)
\(Z_{C1}=\dfrac{1}{\omega_1C}=40\) (2)
Lấy (1) chia (2) vế với vế ta được: \(\omega_1^2LC=\dfrac{3}{4}\) (3)
Khi tần số \(\omega_2\) thì hệ số công suất bằng 1
\(\Rightarrow Z_{L2}=Z_{C2}\Rightarrow \omega_2.L=\dfrac{1}{\omega_2C}\)
\(\Rightarrow \omega_{2}^2LC=1\) (4)
Lấy (4) chia (3) vế với vế \(\Rightarrow \dfrac{\omega_2}{\omega_1}=\dfrac{2}{\sqrt 3}\Rightarrow \omega_2=\dfrac{2}{\sqrt 3}\omega_1\)
Chọn B.
Khi C = C1 hoặc C = C2 thì I như nhau, do vậy:
\(Z_1=Z_2\Rightarrow Z_L-Z_{C1}=Z_{C2}-Z_L\Rightarrow Z_L=\dfrac{Z_{C1}+Z_{C2}}{2}=45\Omega\)
Để cường độ hiệu dụng qua R cực đại thì mạch xảy ra cộng hưởng.
\(\Rightarrow Z_C=Z_L=45\Omega\)
Chọn A.
Tụ xoay có điện dung tỉ lệ với hàm số bậc nhất đối với góc xoay α => C = aα + b (a, b là hằng số)
Đáp án D