Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
4m2+m=5m2+n suy ra m= 5m2+n-4m2= m2+n
ta có m-n
m2+n -n=m2 là một số chính phương
Với n=1
S=2^3+2^2+1=13 không chia hết cho 7
Bạn kiểm tra lại đề xem
A=n^3+3n^2+5n+3
=n^3+5n+3n^2+3
=n(n^2+5)+3(n^2+1)
do 3(n^2+1) luôn chia hết cho 3 nên mik chỉ xét n(n^2+5)
đặt n=3k suy ra 3k((3k)^2+5) luôn chia hết cho 3 suy ra A chia hết cho 3
đặt n=3k+1 suy ra (3k+1)((3k+1)^2+5)=(3k+1)(9k^2+6k+1+5)=(3k+1)(9k^2+6k+6)=(3k+1)3(3k^2+2k+2) chia hết cho 3 suy ra A chia hết cho 3
đặt n=3k+2 suy ra (3k+2)((3k+2)^2+5)=(3k+2)(9k^2+12k+4+5)=(3k+2)(9k^2+12k+9)=(3k+2)3(3k^2+4k+3) chia hết cho 3 suy ra A chia hết cho 3
vậy A luôn chia hết cho 3 với mọi giá trị của n
\(a,n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\left(n^2-1\right)\left(n^2-4\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)(chia hết cho 1;2;3;4;5)\(\Rightarrowđpcm\)
b,
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
lp 6 bt lm r
gọi UCLN(3n+1;5n+2)=d
ta có:
5n+2-(3n+1)=2n+2 chia hết cho d
5n+2-(2n+2)=3n chia hết cho d
3n+1-3n=1 chia hết cho d
=>d=1
=>3n+1 và 5n+2 là 2 số ng t cùng nhau
=>phân số trên là ph/số tối giản
Gọi \(ƯC\left(3n+1;5n+2\right)=d\left(d\in N\right)\)
\(\Rightarrow3n+1⋮d,5n+2⋮d\)
\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)
\(\Rightarrow15n+6-15n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Ước chung của tử và mẫu là 1 nên phân số \(\frac{3n+1}{5n+2}\) tối giản
a) Đặt \(A=\frac{3n+1}{5n+2}\). Gọi ƯCLN(3n+1 , 5n+2) = d \(\left(d\ge1\right)\)
Khi đó : \(3n+1⋮d\) và \(5n+2⋮d\)
\(\Rightarrow5\left(3n+1\right)⋮d\) và \(3\left(5n+2\right)⋮d\)
\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\Rightarrow d=1\)
Suy ra ƯCLN(3n+1 , 5n+2) = 1 , vậy A là phân số tối giản.
b) Đặt \(B=\frac{n^3+2n}{n^4+3n^2+1}\) . Gọi ƯCLN(n3+2n , n4+3n2+1) = d \(\left(d\ge1\right)\)
Khi đó : \(B=\frac{n\left(n^2+2\right)}{n^2\left(n+2\right)+n^2+1}\)
Ta có : \(n\left(n^2+2\right)⋮d\) và \(n^2\left(n+2\right)+n^2+1⋮d\)
Từ \(n\left(n^2+2\right)⋮d\) \(\Rightarrow\left[\begin{array}{nghiempt}n⋮d\\n^2+2⋮d\end{array}\right.\)
TH1. Nếu \(n⋮d\) thì ta viết dưới mẫu thức B dưới dạng :
\(n\left(n^3+3n\right)+1⋮d\) . mà n(n3+3n)\(⋮\)d => \(1⋮d\) \(\Rightarrow d\le1\)
Mà \(d\ge1\Rightarrow d=1\). Lập luận tương tự câu a) , suy ra đpcm
TH2. Nếu \(n^2+2⋮d\) thì ta viết mẫu thức B dưới dạng :
\(\left(n^4+2n^2\right)+\left(n^2+2\right)-1=\left(n^2+2\right)\left(n^2+1\right)-1⋮d\)
mà n2+2 \(⋮\)d nên \(1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1
Lập luận tương tự...
a)Gọi UCLN(3n+1;5n+2) là d
Ta có:
[3(5n+2)]-[5(3n+1)] chia hết d
=>[15n+6]-[15n+5] chia hết d
=>1 chia hết d.Suy ra 3n+1 và 3n+5 là số nguyên tố cùng nhau
=>Phân số tối giản
b)Gọi d là UCLN(n3+2n;n4+3n2+1)
Ta có:
n3+2n chia hết d =>n(n3+2n) chia hết d
=>n4+2n2 chia hết d (1)
n4+3n2-(n4+2n2)=n2+1 chia hết d
=>(n2+1)2=n4+2n2+1 chia hết d (2)
Từ (1) và (2) => (n4+3n2+1)-(n4-2n2) chia hết d
=>1 chia hết d
=>d=1.Suy ra n3+2n và n4+3n2+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
Có m<n
<=>5m<5n
_____________________________
Có m<n
<=>-3m>-3n