Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B M H C D K F I
a/
Xét tg vuông AMO và tg vuông BMO có
MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
OA=OB=R
=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)
Xét tg MAB có
MA=MB (cmt) => tg MAB cân tại M
\(\widehat{AMO}=\widehat{BMO}\) (cmt)
\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
Xét tg vuông AMO có
\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
b/
Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)
Xét tg vuông AMC có
\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Ta có
\(AM^2=MO.MH\) (cmt)
\(\Rightarrow MH.MO=MD.MC\)
c/ Xét tg AMK có
\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)
\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)
\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)
Phần còn lại không biết điểm E là điểm nào?
Xét (O) có
OC là bán kính
FC\(\perp\)CO tại C
Do đó: FC là tiếp tuyến của (O)
Xét (O) có
FC,FA là các tiếp tuyến
Do đó: FC=FA và OF là phân giác của góc AOC
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB và OM là phân giác của góc AOB
Ta có: OF là phân giác của góc AOC
=>\(\widehat{AOC}=2\cdot\widehat{AOF}\)
Ta có: OM là phân giác của góc AOB
=>\(\widehat{AOB}=2\cdot\widehat{AOM}\)
Ta có: \(\widehat{AOB}+\widehat{AOC}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{AOF}+\widehat{AOM}\right)=180^0\)
=>\(2\cdot\widehat{FOM}=180^0\)
=>\(\widehat{FOM}=90^0\)
Xét ΔFOM vuông tại O có OA là đường cao
nên \(AF\cdot AM=OA^2\)
mà AF=CF và BM=MA
nên \(CF\cdot MB=OA^2=R^2\)
-____-" trời ạ >.< viết đề có tâm xíu đi TT.TT
cát tuyến DEC
Sorry