\(\left(\frac{a}{a^2-4}+\frac{2}{2-a}+\frac{1}{a+2}\right):\left(\frac{10-a^2}{a+2}-2+a\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

b: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-1}{x-2}\)

d: Để M nguyên thì \(x-2\in\left\{1;-1\right\}\)

hay \(x\in\left\{3;1\right\}\)

a: ĐKXĐ: \(a\notin\left\{0;1;-1\right\}\)

\(A=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a^2}{a^2+1}\cdot\dfrac{a^2+1}{a\left(a+1\right)}\)

\(=\dfrac{a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a}{a+1}\)

\(=\dfrac{a^2-a^2+a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a^2-1}\)

b: Để A=3 thì \(3a^2-3=a\)

\(\Leftrightarrow2a^2=3\)

hay \(a\in\left\{\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right\}\)

20 tháng 8 2016

a)ĐKXĐ:x>=0;x khác 9

A=[\(\frac{\sqrt{x}}{\sqrt{x}-3}\) - \(\frac{3\sqrt{x}+9}{x-9}\)\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)\(\div\) [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1]

 A=[\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-3\sqrt{x}-9+2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\)\(\div\) [\(\frac{\left(2\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-x+9}{x-9}\)]

A=[\(\frac{3x-12\sqrt{x}-9}{x-9}\)].[\(\frac{x-9}{x-4\sqrt{x}+3}\)]

A=\(\frac{3x-12\sqrt{x}-9}{x-4\sqrt{x}+3}\)

 

 

a: \(A=\left(x^2+x+1-x\right):\dfrac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)

\(=\left(x^2+1\right)\cdot\left(1-x\right)\)

b: Để A<0 thì 1-x<0

=>x>1

c: |x-4|=5

=>x-4=5 hoặc x-4=-5

=>x=9(nhận) hoặc x=-1(loại)

Thay x=9 vào A, ta được:

\(A=\left(9^2+1\right)\left(1-9\right)=82\cdot\left(-8\right)=-656\)

b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

mà x là số nguyên

nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)

NV
5 tháng 6 2019

\(M=\left(\frac{\left(x^2-1\right)\left(x^2+1\right)-\left(x^4-x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\right)\left(x^4-\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+1}\right)\)

\(=\left(\frac{x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\right)\left(x^4-x^2+1\right)\)

\(=\frac{x^2-2}{x^2+1}\)

b/ \(M=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)

Do \(x^2+1\ge1\Rightarrow\frac{3}{x^2+1}\le3\Rightarrow1-\frac{3}{x^2+1}\ge1-3=-2\)

\(\Rightarrow M_{min}=-2\) khi \(x=0\)