K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021
Để tìm bội của n ( n khác 0 ) ta:....
14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

14 tháng 8 2015

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

14 tháng 8 2015

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi

22 tháng 7 2016

câu 1 :

Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :

Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)

Từ (*) => ab = mnd2 ; [a, b] = mnd

=> (a, b).[a, b] = d.(mnd) = mnd2 = ab

=> ab = (a, b).[a, b] . (**)

22 tháng 7 2016

bài 1=7

4 tháng 4 2020

Gọi \(\left(2n+1,n\right)\) là \(d\).

\(\left(2n+1,n\right)\) là \(d\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\n⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-n⋮d\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\left(2n+1,n\right)=1\)

\(\Rightarrow2n+1\)và \(n\)là 2 SNT cùng nhau

\(\Rightarrow\)Phân số \(\frac{2n+1}{n}\)tối giản  (đpcm)

4 tháng 4 2020

Đặt: ( 2n + 1 ; n ) = d 

=> ( 2n + 1 - n ; n ) = d 

=> (n + 1; n ) = d 

=> ( n + 1 - n ; n ) = d 

=> (1; n ) = d 

=> d = 1 

Như vậy: ( 2n + 1; n ) = 1 =>  2n + 1; n  là hai số nguyên tố cùng nhau 

=> M là phân số tối giản

31 tháng 5

           Bài 1:

a; A = \(\dfrac{2n+1}{2n+2}\) (n \(\in\) N)

Gọi ước chung lớn nhất của 2n + 1 và 2n + 2 là d

Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)

    ⇒ 2n + 2  - 2n - 1 ⋮ d

      (2n - 2n) + (2 - 1) ⋮ d

                                1 ⋮ d

    d = 1

Vậy ước chung lớn nhất của 2n + 1 và 2n + 2 là 1

Hay A = \(\dfrac{2n+1}{2n+2}\) là phân số tối giản với mọi giá trị của số tự nhiên n.

 

31 tháng 5

          Bài 1b

  B = \(\dfrac{2n+3}{3n+5}\) (n \(\in\) N)

Gọi ước chung lớn nhất của 2n + 3 và 3n + 5 là d ta có:

\(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3.\left(2n+3\right)⋮d\\2.\left(3n+5\right)⋮d\end{matrix}\right.\)

\(\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

6n + 10 - 6n - 9 ⋮ d

(6n - 6n) + (10 - 9) ⋮ d

                         1 ⋮ d

         d = 1

Ước chung lớn nhất của 2n + 3 và 3n + 5 là 1

Hay B = \(\dfrac{2n+3}{3n+5}\) là phân số tổi giản với mọi số tự nhiên n