Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=6x+\dfrac{x^2+2x-x^2+2x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x^2-4\right)\left(x^2+4\right)-2x\left(x^2-4\right)}{4x}\)
\(=6+\dfrac{4x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x^2-4\right)\left(x^2-2x+4\right)}{4x}\)
\(=6+x^2-2x+4=x^2-2x+10\)
b: Để \(M^2=M\) thì M=0 hoặc M=1
=>\(x\in\varnothing\)
c: Vì \(M=x^2-2x+10=\left(x-1\right)^2+9>0\)
nên \(M^2>M\forall x\)
a) Ta có: \(m=\left(4x+3\right)^2-2x\left(x+6\right)-5\left(x-2\right)\left(x+2\right)=16x^2+24x+9-2x^2-12x-5\left(x^2-4\right)\)
\(=14x^2+12x+9-5x^2+20=9x^2+12x+29\)
b) \(9x^2+12x+29=\left(9x^2+12x+16\right)+12=\left(3x+4\right)^2+12\ge12\)
Dấu "=" xảy ra khi 3x+4=0 => x=\(\frac{-4}{3}\) => đa thức trên luôn dương.
`#3107.\text {DN}`
a)
\((2x-3)^2-x(3-x)+5x-4x^2+17\)
`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`
`= x^2 - 10x + 26`
b)
`M = x^2 - 10x + 26`
`= [(x)^2 - 2*x*5 + 5^2] + 1`
`= (x - 5)^2 + 1`
Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`
Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
A=(4x+3)2-2x(x+6)-5(x-2)(x+2)
A=16x2+24x+9-2x2-12x-5(x2-4)
A=16x2+24x+9-2x2-12x-5x2+20
A=(16x2-2x2-5x2)+(24x-12x)+(9+20)
A=9x2+12x+29
thay x=-2 vào A ta đc
A=9.(-2)2+12.(-2)+29
A=9.4-24+29
A=36-24+29
A=41
Đây là 1 bài trong 1 đề t làm nộp gửi thầy nên t đưa ảnh nha,tại lúc đó đề sai nên trong bài giải có vài chữ ko liên quan
Làm tiếp \(M\ge-3\)
\(\frac{x+1}{2x}\ge-3\)
\(\frac{1}{2}+\frac{1}{2x}\ge-3\)
Đến đây dễ r