Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)-100\)
\(P=3\left(x+y\right)^2-2.5-100\)
\(P=3.5^2-110\)
\(P=-35\)
b) \(Q=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3.5+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+25\)
\(Q=5^3-2.5^2+25\)
\(Q=100\)
b: \(=\dfrac{3a-9-2a-6-6}{\left(a+3\right)\left(a-3\right)}=\dfrac{a-15}{a^2-9}\)
Ta có:
\(2x+y=11z\) và \(3x-y=4z\)
Chia theo vế ta có:
\(\dfrac{2x+y}{3x-y}=\dfrac{11z}{4z}=\dfrac{11}{4}\)
\(\Leftrightarrow4\left(2x+y\right)=11\left(3x-y\right)\)
\(\Leftrightarrow8x+4y=33x-11y\)
\(\Leftrightarrow15y=25x\)
\(\Leftrightarrow3y=5x\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}=k\)
\(\Rightarrow x=3k,y=5k\)
Thay vào Q ta có:
\(Q=\dfrac{2\cdot\left(3k\right)^2-3\cdot3k\cdot5k}{\left(3k\right)^2+3\cdot\left(5y\right)^2}\)
\(Q=\dfrac{18k^2-45k^2}{9k^2+75k^2}\)
\(Q=\dfrac{k^2\left(18-45\right)}{k^2\left(9+75\right)}\)
\(Q=\dfrac{-27}{84}=-\dfrac{9}{28}\)
\(\dfrac{2x+y}{3x-y}=\dfrac{11}{4}\)
=>33x-11y=8x+4y
=>25x=15y
=>5x=3y
=>x/3=y/5=k
=>x=3k; y=5k
\(Q=\dfrac{2\cdot9k^2-3\cdot3k\cdot5k}{9k^2+3\cdot25k^2}=\dfrac{18-9\cdot5}{9+3\cdot25}=\dfrac{-9}{28}\)
a.
$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.
$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.
$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$
d.
$x^3-3x^2+3x-1=(x-1)^3$
e.
$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$
$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$
f.
$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$
c: \(=\dfrac{x^3+2x^2+x^2+2x-10x-20}{x+2}\)
\(=x^2+x-10\)
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Tìm GTNN??
Ta có:
\(M=2x^2+3y^2+x-y-3\)
\(M=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)+3\left(y^2-\frac{1}{3}y+\frac{1}{36}\right)-\frac{77}{24}\)
\(M=2\left(x+\frac{1}{4}\right)^2+3\left(y-\frac{1}{6}\right)^2-\frac{77}{24}\ge-\frac{77}{24}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}2\left(x+\frac{1}{4}\right)^2=0\\3\left(y-\frac{1}{6}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=\frac{1}{6}\end{cases}}\)
Vậy \(Min_M=-\frac{77}{24}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{4}\\y=\frac{1}{6}\end{cases}}\)
Tìm Min ?
M = 2x2 + 3y2 + x - y - 3
= 2( x2 + 1/2x + 1/16 ) + 3( y2 - 1/3y + 1/36 ) - 77/24
= 2( x + 1/4 )2 + 3( y - 1/6 )2 - 77/24
\(\hept{\begin{cases}2\left(x+\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{6}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+\frac{1}{4}\right)^2+3\left(y-\frac{1}{6}\right)^2-\frac{77}{24}\ge-\frac{77}{24}\forall x,y\)
Dấu "=" xảy ra <=> x = -1/4 ; y = 1/6
=> MinM = -77/24 <=> x = -1/4 ; y = 1/6