Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=2+22+23+...+220
=(2+22+23+24)+....+(217+218+219+220)
=2(1+2+22+23)+....+217(1+2+22+23)
=2.15+...+217.15
=(2+....+217).15
=> M chia hết cho 15
\(M=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
\(M=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+...2^{19}\right)⋮3\)
\(M=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{17}+2^{19}\right)+\left(2^2+2^4\right)+...+\left(2^{18}+2^{20}\right)\)
\(M=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{17}\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(M=2.5+2^5.5+...+2^{17}.5+...+2^{18}.5⋮5\)
nếu x chia 3 dư 1 hoặc dư 2 ,y chia 3 dư 1 hoặc dư => \(x^2\)chia 3 dư 1, y2 chia 3 dư 1=> x2+y2 chia 3 dư 2=> không thỏa mãn
nếu x chia hết cho 3, y chia hết cho 3=> x2chia hết cho 3, y2chia hết cho 3=>x2+y2 chia hết cho 3
=> x2+y2 chia hết cho 3 <=> x chia hết cho 3, y chia hết cho 3=> đpcm
\(a,2+2^2+2^3+...+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=2.3+2^3.3+...+2^9.3\)
\(=3.\left(2+2^3+...+2^9\right)\)
Vì \(3⋮3\) và \(2+2^3+...+2^9\inℕ^∗\) nên \(3.\left(2+2^3+...+2^9\right)⋮3\)
Vậy tổng trên chia hết cho 3.
Câu b bn làm tương tự : tách ra cho có thừa số chia hết cho 4.
A= 21 + 22 + 23 +.........+210
= ( 21+22) + ( 23+24)+........+(29+210)
= 21(1+2) +23(1+2)+............+29(1+2)
= 21.3+23.3+ .........+29.3
=3(21+23+25+27+29)chia hết cho 3
B=31+32+33+..................+310
=(31+32)+(33+34)+............+(39+310)
=31(1+3)+33(1+3)+.................+39(1+3)
=31.4+33.4+........+39.4
=4(31+33+........+39)chia hết cho 4
\(M=2+2^2+2^3+...+2^{20}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{19}\right)⋮3\)