Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x| + |x + 1| = 1
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 1
=> -2x = 2
=> x = -1(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 1
=> 0x = 0
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 1
=> 2x = 0
=> x = 0 (tm)
Vậy \(x\in\left\{-1;0\right\}\)
b) |x| + |x + 1| = 2020
Nếu x \(\le\) - 1
=> |x| = -x
=> |x + 1| = -(x + 1) = -x - 1
Khi đó |x| + |x + 1| = 1 (1)
<=> -x - x - 1 = 2020
=> -2x = 2021
=> x = -1010,5(tm)
Nếu -1 < x < 0
=> |x| = -x
=> |x + 1| = x + 1
Khi đó (1) <=> -x + x + 1 = 2020
=> 0x = 2019
=> \(x\in\varnothing\)
Nếu x \(\ge\) 0
=> |x| = x
=> |x + 1| = x + 1
Khi đó (1) <=> x + x + 1 = 2020
=> 2x = 2019
=> x = 1009,5 (tm)
Vậy \(x\in\left\{-1010,5;1009,5\right\}\)
c)\(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
=> \(\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
=> \(\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
=> \(\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
=> x + 19 = 0 (Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
=> x = -19
Vậy x =-19
a) | x | + | x + 1 | = 1 (*)
+) Với x < -1
(*) <=> -x - ( x + 1 ) = 1
<=> -x - x - 1 = 1
<=> -2x - 1 = 1
<=> -2x = 2
<=> x = -1 ( không thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 1
<=> -x + x + 1 = 1
<=> 0 + 1 = 1 ( luôn đúng với mọi x ) (1)
+) Với ≥ 0
(*) <=> x + ( x + 1 ) = 1
<=> x + x + 1 = 1
<=> 2x + 1 = 1
<=> 2x = 0
<=> x = 0 ( thỏa mãn ) (2)
Từ (1) và (2) => Với -1 ≤ x ≤ 0 thì thỏa mãn đề bài
b) | x | + | x + 1 | = 2020 (*)
+) Với x < -1
(*) <=> - x - ( x + 1 ) = 2020
<=> -x - x - 1 = 2020
<=> -2x - 1 = 2020
<=> -2x = 2021
<=> x = -2021/2 ( thỏa mãn )
+) Với -1 ≤ x < 0
(*) <=> -x + ( x + 1 ) = 2020
<=> -x + x + 1 = 2020
<=> 0 + 1 = 2020 ( vô lí )
+) Với x ≥ 0
(*) M <=> x + ( x + 1 ) = 2020
<=> x + x + 1 = 2020
<=> 2x + 1 = 2020
<=> 2x = 2019
<=> x = 2019/2 ( thỏa mãn )
Vậy x = -2021/2 hoặc x = 2019/2
c) \(\frac{x+1}{18}+\frac{x+2}{17}=\frac{x+3}{16}+\frac{x+4}{15}\)
\(\Leftrightarrow\left(\frac{x+1}{18}+1\right)+\left(\frac{x+2}{17}+1\right)=\left(\frac{x+3}{16}+1\right)+\left(\frac{x+4}{15}+1\right)\)
\(\Leftrightarrow\frac{x+1+18}{18}+\frac{x+2+17}{17}=\frac{x+3+16}{16}+\frac{x+4+15}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}=\frac{x+19}{16}+\frac{x+19}{15}\)
\(\Leftrightarrow\frac{x+19}{18}+\frac{x+19}{17}-\frac{x+19}{16}-\frac{x+19}{15}=0\)
\(\Leftrightarrow\left(x+19\right)\left(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\right)=0\)
Vì \(\frac{1}{18}+\frac{1}{17}-\frac{1}{16}-\frac{1}{15}\ne0\)
\(\Rightarrow x+19=0\)
\(\Rightarrow x=-19\)
\(\left|x\right|=\frac{3}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-3}{4}\end{cases}}\)
mà \(x< 0\)nên \(x=\frac{-3}{4}\)
vậy \(x=\frac{-3}{4}\)
\(\left|x\right|=0,35\)
\(\left|x\right|=\frac{7}{20}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{20}\\x=\frac{-7}{20}\end{cases}}\)
mà \(x>0\)nên \(x=\frac{7}{20}\)
vậy \(x=\frac{7}{20}\)
|x|=3/4 => x=3/4 hoặc x= -3/4
|x|=0,35 => x=0,35 hoặc x= -0,35
1) a) \(A=x-\left|x\right|\)
Xét \(x\ge0\)thì A = x - x = 0 (1)
Xét x < 0 thì A = x - ( - x) = 2x < 0 (2)
Từ (1) và (2) ta thấy \(A\le0\)
Vậy GTLN của A bằng 0 khi và chỉ khi x \(\ge\)0
b) B = \(\left|x-3\right|-\left|5-x\right|\ge\left|x-3-5-x\right|\ge\left|8\right|=8\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-3\right)\left(5-x\right)>0\)
TH1: \(\orbr{\begin{cases}x-3>0\\5-x>0\end{cases}}\Rightarrow\orbr{\begin{cases}x>3\\x< 5\end{cases}\Rightarrow}3< x< 5\)(t/m)
TH2 : \(\orbr{\begin{cases}x-3< 0\\5-x< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x< 3\\x>5\end{cases}}\)(vô lý)
Vậy GTNN của B là 8 khi và chỉ khi 3 < x < 5
c) \(C=\frac{6}{\left|x\right|-3}\)
Xét \(\left|x\right|>3\)thì C > 0
Xét \(\left|x\right|< 3\)thì do \(x\inℤ\)nên \(\left|x\right|\)= 0 hoặc 1 hoặc 2 ,khi đó C bằng -2,hoặc -3 hoặc -6
Vậy GTNN của C bằng -6 khi và chỉ khi x = \(\pm2\)
d) \(D=\frac{x+2}{\left|x\right|}\)
Xét các trường hợp :
Xét \(x\le-2\)thì \(C\le1\)
Xét \(x=-1\)thì \(C=1\)
Xét \(x\ge1\). Khi đó \(D=\frac{x+2}{x}=1+\frac{2}{x}\). Ta thấy D lớn nhất <=> \(\frac{2}{x}\)lớn nhất.Chú ý rằng x là số nguyên dương nên \(\frac{2}{x}\)lớn nhất <=> x nhỏ nhất,tức là x = 1,khi đó D = 3
So sánh các trường hợp trên ta suy ra : GTLN của C bằng 3 khi và chỉ khi x = 1
Còn bài 2 tự làmm
a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\left(1\right)\)
Bình phương 2 vế của (1) ta được:
\(\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\) (Đpcm)
Dấu = khi \(xy\ge0\)
b)\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x\right|\)
Áp dụng câu a ta có:
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) (luôn đúng)
Suy ra đpcm
|x|-x=16
|x|=16+x
=>x=16+x hoặc x=-(16+x)=-16-x
x-x=16 x+x=-16
0=16(loại) 2x=-16
x=-16/2
x=-8
Vậy x=-8
-8
Thử lại là biết