K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: |x+6|+|x-2|=8(1)

TH1: x<-6

Phương trình (1) sẽ trở thành:

-x-6+2-x=8

=>-2x-4=8

=>-2x=12

=>x=-6(loại)

TH2: -6<=x<2

Phương trình (1) sẽ trở thành:

\(x+6+2-x=8\)

=>8=8(luôn đúng)

TH3: x>=2

Phương trình (1) sẽ trở thành:

x+6+x-2=8

=>2x+4=8

=>2x=4

=>x=2(nhận)

Vậy: -6<=x<=2

b: \(\left|x-2\right|+\left|x-5\right|-3=0\)

=>\(\left|x-2\right|+\left|x-5\right|=3\left(2\right)\)

TH1: x<2

Phương trình (2) sẽ trở thành:

\(2-x+5-x=3\)

=>7-2x=3

=>2x=7-3=4

=>x=2(loại)

TH2: 2<=x<5

Phương trình (2) sẽ trở thành:

\(x-2+5-x=3\)

=>3=3(luôn đúng)

TH3: x>=5

Phương trình (2) sẽ trở thành:

x-2+x-5=3

=>2x-7=3

=>2x=10

=>x=5(nhận)

Vậy: 2<=x<=5

9 tháng 11 2016

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

10 tháng 7 2015

\(\left|3x+2\right|=\left|x+5\right|\)

\(\Leftrightarrow3x+2=x+5\text{ hoặc }3x+2=-\left(x+5\right)\)

\(\Leftrightarrow x=\frac{3}{2}\text{ hoặc }x=-\frac{7}{4}\)

10 tháng 7 2015

I3x+2I=Ix+5I

=> I3x+2I=x+5

=> 3x+2=x+5   hoặc 3x+2=-(x+5)

=> 3x-x=5-2     hoặc 3x+2=-x-5

=> 2x  =3         hoặc 3x+x=-5-2

=> x   =3/2       hoặc  4x    =-7

=> x   =3/2       hoặc    x    =-7/4