Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{6}{19}\cdot\dfrac{-7}{11}+\dfrac{6}{19}\cdot\dfrac{-4}{11}+\dfrac{-13}{19}\)
\(B=\dfrac{6}{19}\cdot\left(-\dfrac{4}{11}+\dfrac{-7}{11}\right)+\dfrac{-13}{19}\)
\(B=\dfrac{6}{19}\cdot\left(-1\right)+\dfrac{-13}{19}\)
\(B=-\dfrac{6}{19}+\dfrac{-13}{19}=-\dfrac{19}{19}=-1\)
Vậy \(B=-1\)
\(2-\frac{13}{9}:\frac{5}{14}-\frac{5}{9}.\frac{14}{5}\)
\(=2-\frac{13}{9}.\frac{14}{5}-\frac{5}{9}.\frac{14}{5}\)
\(=2-\frac{14}{5}.\left(\frac{13}{9}-\frac{5}{9}\right)\)
\(=2-\frac{14}{5}.\frac{8}{9}\)
\(=2-\frac{112}{45}=\frac{90}{45}-\frac{112}{45}=\frac{-22}{45}\)
Bài làm của ông a :))
đk: \(-\sqrt[4]{2}\le x\le\sqrt[4]{2}\)
Nếu x = 0 thay vào ta được PT không có nghiệm
Nếu x khác 0 thì ta có: \(x^2\cdot\sqrt[4]{2-x^4}=x^4-x^3+1\)
\(\Leftrightarrow x^2\cdot\sqrt[4]{2-x^4}+x^3=x^4+1\)
\(\Leftrightarrow\sqrt[4]{2-x^4}+x=x^2+\frac{1}{x^2}\)
Đến đây ta sẽ sử dụng 2 BĐT quá là quen thuộc, Cauchy và Bunyakovsky!
Áp dụng Cauchy ta được: \(x^2+\frac{1}{x^2}\ge2\)
Dấu "=" xảy ra khi: \(x^2=\frac{1}{x^2}\Leftrightarrow x^4=1\Rightarrow x^2=1\)
Mặt khác, áp dụng Bunyakovsky ta có:
\(\left(\sqrt[4]{2-x^4}\right)^2\le\left(1^2+1^2\right)\left(\sqrt{2-x^4}+x^2\right)\)
\(\Rightarrow\left(\sqrt{2-x^4}+x^2\right)\le4\left(\sqrt{2-x^4}+x^2\right)^2\le4\cdot2\cdot\left(2-x^4+x^2\right)=8\cdot2=16\)
\(\Rightarrow\sqrt[4]{2-x^4}+x\le\sqrt[4]{16}=2\)
Dấu "=" xảy ra khi: x = 1
Vậy x = 1
\(x^2.\sqrt[4]{2-x^4}=x^4-x^3+1\left(1\right)\)
Ta có x = 0 không là \(n_0\) của (1)
Với \(x\ne0\), Ta có
\(\left(1\right)\Leftrightarrow\sqrt[4]{2-x^4}=x^2-x+\frac{1}{x^2}\)
\(\Leftrightarrow x+\sqrt[4]{2-x^4}=x^2+\frac{1}{x^2}\left(2\right)\)
\(VP_{\left(2\right)}=x^2+\frac{1}{x^2}\ge2\)(cô si )
\(VT_{\left(2\right)}=x+\sqrt[4]{2-x^4}\le\sqrt{\left(1+1\right)\left(x^2+\sqrt{2-x^4}\right)}\le\sqrt{2\sqrt{\left(1+1\right)\left(x^2+2-x^4\right)}}\)\(=\sqrt{2.\sqrt{2.2}}=2\)
Do đó \(\left(2\right)\Leftrightarrow\hept{\begin{cases}VP_{\left(2\right)}=2\\VT_{\left(2\right)}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=\sqrt[4]{2-x^4}\\x^2=\sqrt{2-x^4}\end{cases}}\Leftrightarrow x=1\)
Kết luận Vậy phương trình (1) có \(n_0\)duy nhất \(x=1\)
\(\left(1+\dfrac{1}{2x}\right).lg3+lg2=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow lg3^{1+\dfrac{1}{2x}}+lg2=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow lg\left(2.3^{1+\dfrac{1}{2x}}\right)=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow2.3^{1+\dfrac{1}{2x}}=27-3^{\dfrac{1}{x}}\)
\(\Leftrightarrow2.3.\left(3^{\dfrac{1}{x}}\right)^2=27-3^{\dfrac{1}{x}}\)
Đặt \(3^{\dfrac{1}{x}}=t\left(t>0\right)\) phương trình trở thành:
\(2.3t^2=27-t\)
\(\Leftrightarrow\left[{}\begin{matrix}t_1=\dfrac{-1-\sqrt{649}}{12}\left(l\right)\\t_2=\dfrac{1+\sqrt{649}}{12}\left(tm\right)\end{matrix}\right.\)
Với \(t=\dfrac{-1-\sqrt{649}}{12}\Leftrightarrow3^{\dfrac{1}{x}}=\dfrac{-1-\sqrt{649}}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=log^{\dfrac{-1-\sqrt{649}}{12}}_3\)
\(\Leftrightarrow x=log^3_{\dfrac{-1-\sqrt{649}}{12}}\).
Note: \(\sqrt{\dfrac{1}{4x}+\dfrac{\sqrt{x}+e^x}{\sqrt{x}.e^{2x}}}=\sqrt{\dfrac{1}{4x}+\dfrac{1}{e^x.\sqrt{x}}+\dfrac{1}{e^{2x}}}=\sqrt{\left(\dfrac{1}{2\sqrt{x}}+\dfrac{1}{e^x}\right)^2}=\dfrac{1}{2\sqrt{x}}+\dfrac{1}{e^x}\)
Vấn đề bây giờ có lẽ đã quá đơn giản
Theo công thức biến đổi có số ta có : \(\log_{a^n}x=\frac{\log_ax}{\log_aa^n}=\frac{1}{n}\log_ax\)
Từ đó ta có :
\(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}\)
\(=\frac{1}{\log_ax}+\frac{2}{\log_ax}+\frac{4}{\log_ax}+...+\frac{n}{\log_ax}\)
\(=\frac{1+2+3+...+n}{\log_ax}=\frac{n\left(n+1\right)}{\log_ax}\)
Vậy \(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}=\frac{n\left(n+1\right)}{\log_ax}\)
a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :
\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)
Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)
Mặt khác, ta lại có :
\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)
\(\Leftrightarrow2\log^2_23-5\log_23+2<0\)
\(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)
Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)
Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)
Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)
b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm.
Áp dụng bất đẳng thức Cauchy ta có
\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)
Suy ra
\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
Mặt khác :
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)
Từ đó ta thu được :
\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)
c) Ta chứng minh bài toán tổng quát :
\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1
Thật vậy,
\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\)
suy ra :
\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)
\(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)
Áp dụng bất đẳng thức Cauchy ta có :
\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)
Do đó ta có :
\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1
\(log_aM.log_bM+log_bM.log_cM+log_cM.log_aM=\frac{log_aM.log_bM.log_cM}{log_{abc}M}\)
\(VT=log_aM.log_bM.log_cM.\left(\frac{1}{log_cM}+\frac{1}{log_aM}+\frac{1}{log_bM}\right)\)
\(=log_aM.log_bM.log_cM\left(log_Mc+log_Ma+log_Mb\right)\)
\(=log_aM.log_bM.log_cM\left(log_Mabc\right)\)
\(=log_aM.log_bM.log_cM\left(\frac{1}{log_{abc}M}\right)\\ ĐPCM\)