Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\frac{1-\ln x-\left(1-\ln x-1\right)}{x^2\left(1-\ln x\right)^2}=\frac{1}{x^2\left(1-\ln x\right)^2}\)
a) y=x+3x+1y=x+3x+1 có tập xác định : R\{-1}
y′=−2(x+1)2<0,∀x≠−1y′=−2(x+1)2<0,∀x≠−1
Tiệm cận đứng: x = -1
Tiệm cận ngang: y = 1
Bảng biến thiên:
Đồ thị hàm số:
b) Xét phương trình có nghiệm là hoành độ giao điểm của (C) và đường thẳng (d): y = 2x + m
(1)
x+3x+1=2x+m⇔x+3=(2x+m)(x+1)⇔2x2+(m+1)x+m−3=0,x≠−1x+3x+1=2x+m⇔x+3=(2x+m)(x+1)⇔2x2+(m+1)x+m−3=0,x≠−1
Δ = (m+1)2 – 4.2(m-3) = m2 – 6m + 25 = (m-3)2 + 16> 0, Δm, nên (1) luôn có hai nghiệm phân biệt khác -1.
Vậy (d) luôn cắt (C) tại hai điểm phân biệt M, N (hoành độ của M, N chính là nghiệm của (1)).
TenAnh1
C = (-4.24, -6.16)
C = (-4.24, -6.16)
C = (-4.24, -6.16)
D = (11.12, -6.16)
D = (11.12, -6.16)
D = (11.12, -6.16)
E = (-4.28, -6.08)
E = (-4.28, -6.08)
E = (-4.28, -6.08)
F = (11.08, -6.08)
F = (11.08, -6.08)
F = (11.08, -6.08)
Vậy \(Min_{MN}=2\sqrt{3}\) khi \(m=3\).
\(I=\int\limits^e_1\frac{\frac{1-lnx}{x^2}}{\left(1+\frac{lnx}{x}\right)^2}dx\)
Đặt \(\frac{lnx}{x}=t\Rightarrow\left(\frac{1-lnx}{x^2}\right)dx=dt\)
\(\Rightarrow I=\int\limits^{\frac{1}{e}}_0\frac{dt}{\left(1+t\right)^2}=-\frac{1}{1+t}|^{\frac{1}{e}}_0=\frac{1}{e+1}\)
\(\Rightarrow a=b=1\Rightarrow a^2+b^2=2\)
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
Lời giải:
Ta có:
\(m\ln (1-x)-\ln x=m\)
\(\Rightarrow m=\frac{\ln x}{\ln (1-x)-1}\)
Đặt \(f(x)=\frac{\ln x}{\ln (1-x)-1}\) \(\Rightarrow f'(x)=\frac{\frac{1}{x}(\ln (1-x)-1)+\frac{1}{1-x}.\ln x}{(\ln (1-x)-1)^2}\)
Với mọi \(x\in (0;1)\) thì \(\ln x< 0; \ln (1-x)< 0\).
\(\Rightarrow \frac{1}{x}(\ln (1-x)-1)+\frac{1}{1-x}.\ln x< 0\)
\(\Rightarrow f'(x)< 0, \forall x\in (0;1)\) hay hàm $f(x)$ nghịch biến trên $(0;1)$
-----------------
Lại có:
\(\lim _{x\to 0+}\frac{\ln x}{\ln (1-x)-1}=\lim_{x\to 0+}\frac{1}{\ln (1-x)-1}.\lim_{x\to +\infty}\ln x\)
\(-1.(-\infty)=+\infty\)
\(\lim_{x\to 1-}\frac{\ln x}{\ln (1-x)-1}=\lim _{x\to 1-}\ln x.\lim_{x\to 1-}\frac{1}{\ln (1-x)-1}=0.0=0\)
Do đó PT có nghiệm khi \(m\in (0;+\infty)\)
Đề bài là gì vậy bạn?