Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔMDB vuông tại D và ΔNEC vuông tại E có
BD=CE
góc MBD=góc NCE
=>ΔMDB=ΔNEC
=>DM=EN
2: DM//EN
DM=EN
=>DMEN là hình bình hành
=>I là trung điểm của MN
b, Áp dụng t/c dtsbn:
\(x:y:z=2:5:7\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x-y+z}{2-5+7}=\dfrac{25}{4}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{25}{2}\\y=\dfrac{125}{4}\\z=\dfrac{175}{4}\end{matrix}\right.\)
c, Áp dụng t/c dstbn:
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\\ \Rightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
d, Áp dụng t/c dstbn:
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-2z}{8-12-2\cdot15}=\dfrac{36}{-34}=-\dfrac{18}{17}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{144}{17}\\y=-\dfrac{216}{17}\\z=-\dfrac{270}{17}\end{matrix}\right.\)
e, Áp dụng t/c dtsbn:
\(x:y:z=3:5:\left(-2\right)\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{3\cdot5-5+3\left(-2\right)}=\dfrac{12}{4}=3\\ \Rightarrow\left\{{}\begin{matrix}x=9\\y=15\\z=-6\end{matrix}\right.\)
\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)
\(\Rightarrow\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+4}{2016}+1\right)=0\)
\(\Rightarrow\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)
\(\Rightarrow\left(x+2020\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
\(\Rightarrow x+2020=0\Rightarrow x=2020\)
x+y+x=0
=) x+y=-z
(=) (x+y)^3 = (-z)^3
(=) x^3+3x^2y+3xy^2+y = -z^3
(=) x^3+y^3+z^3 = -3x^2y- 3xy^2
= x^3+y^3+z^3= -3xy(x+y)
(=) x^3+y^3+z^3 = -3xy(-z)
=) x^3+y^3+z^3 = 3xyz
Cần chứng minh :
x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)
Có :
x3 + y3 + z3 - 3xyz
= (x + y)3 - 3xy(x + y) + z3 - 3xyz
= (x + y)3 + z3 - 3xy.(x + y + z)
= (x + y + z).[(x + y)2 - (x + y).z + z2) - 3xy(x + y + z)
= (x + y + z).[x2 + 2xy + y2 - zx - yz + z2) - 3xy(x + y + z)
= (x + y + z).(x2 + y2 + z2 + 2xy - 3xy - yz - zx)
= (x + y + z).(x2 + y2 + z2 xy - yz - zx) (Điều cần chứng minh)
=> (x + y + z).(x2 + y2 + z2 xy - yz - zx) = 0 (vì x + y + z = 0)
=> x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
\(\left(x+1\right)^2=\left(x+1\right)^4\)
\(\Rightarrow\left(x+1\right)^4-\left(x+1\right)^2=0\)
\(\Rightarrow\left(x+1\right)^2\left[\left(x+1\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x+1\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x+1=\pm1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\text{ or }x=-2\end{cases}}\)