Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{100^2}-1\right).\)
\(B=\frac{-3}{2^2}\times\frac{-8}{3^2}\times\frac{-15}{4^2}\times.....\times\frac{-9999}{100^2}\)
\(B=-\left(\frac{3}{2^2}\times\frac{8}{3^2}\times.....\times\frac{9999}{100^2}\right)\)(vì A là tích của 99 thừa số âm nên kết quả là âm )
\(B=-\left(\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times.....\times\frac{99.101}{100.100}\right)\)
\(B=-\left(\frac{1.2.3...99}{2.3.4.....100}\times\frac{3.4.5....101}{2.3.4....100}\right)\)
\(B=-\left(\frac{1}{100}\times\frac{101}{2}\right)\)
\(B=-\frac{101}{200}\)
Bài 3:
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
c: Xét tứ giác ABCI có
AI//BC
AI=BC
Do đó: ABCI là hình bình hành
=>AB//CI
Ta có: AB//CI
AB//CD
CD,CI có điểm chung là C
Do đó: D,C,I thẳng hàng
Bài 4:
a: Ta có: AB là đường trung trực của ME
=>AM=AE; BM=BE
Ta có: AC là đường trung trực của MF
=>AM=AF và CM=CF
Ta có: AM=AE
AM=AF
Do đó: AE=AF
=>A nằm trên đường trung trực của EF
b: BE+CF
=BM+CM
=BC
c: Xét ΔAEB và ΔAMB có
AE=AM
EB=MB
AB chung
Do đó: ΔABE=ΔABM
=>\(\widehat{EAB}=\widehat{MAB}\)
mà tia AB nằm giữa hai tia AE,AM
nên AB là phân giác của góc EAM
=>\(\widehat{EAM}=2\cdot\widehat{BAM}\)
Xét ΔAMC và ΔAFC có
AM=AF
CM=CF
AC chung
Do đó: ΔAMC=ΔAFC
=>\(\widehat{MAC}=\widehat{FAC}\)
mà tia AC nằm giữa hai tia AM,AF
nên AC là phân giác của góc MAF
=>\(\widehat{MAF}=2\cdot\widehat{MAC}\)
Ta có: \(\widehat{EAF}=\widehat{EAM}+\widehat{FAM}\)
\(=2\cdot\widehat{MAB}+2\cdot\widehat{MAC}\)
\(=2\left(\widehat{MAB}+\widehat{MAC}\right)=2\cdot\widehat{BAC}=120^0\)
Xét ΔAEF có AE=AF
nên ΔAEF cân tại A
=>\(\widehat{AEF}=\widehat{AFE}\)(2)
=>\(\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-120^0}{2}=30^0\)
d: Xét ΔAEI và ΔAMI có
AE=AM
\(\widehat{EAI}=\widehat{MAI}\)
AI chung
Do đó: ΔAEI=ΔAMI
=>\(\widehat{AEI}=\widehat{AMI}\)(1)
Xét ΔAMK và ΔAFK có
Am=AF
\(\widehat{MAK}=\widehat{FAK}\)
AK chung
Do đó: ΔAMK=ΔAFK
=>\(\widehat{AMK}=\widehat{AFK}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{AMI}=\widehat{AMK}\)
=>MA là phân giác của góc IMK
e: Để A là trung điểm của EF thì \(\widehat{EAF}=180^0\)
=>\(\widehat{BAC}=\dfrac{\widehat{EAF}}{2}=\dfrac{180^0}{2}=90^0\)
Xét ΔABC có
\(\widehat{B}+\widehat{C}+\widehat{A}=180^0\)
\(\Leftrightarrow2\cdot\widehat{B}=180^0-\widehat{A}\)
hay \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)
a) Các điểm có hoành độ bằng 2021 là các điểm thuộc đường thẳng song song với trục tung và cắt trục hoành tại điểm có hoành độ bằng 2021.
b) Các điểm có tung độ bằng -2022 là các điểm thuộc đường thẳng y = -2022
c) Các điểm có tung độ bằng hoành độ là các điểm thuộc đường thẳng y = x
d) Các điểm có tung độ và hoành độ đối nhau là các điểm thuộc đường thẳng y = -x.
2) Ta có: \(\left|4-3x\right|=\left|x+\dfrac{1}{3}\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}4-3x=x+\dfrac{1}{3}\\3x-4=x+\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-4x=-\dfrac{11}{3}\\2x=\dfrac{13}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{13}{6}\end{matrix}\right.\)
3: Ta có: \(\left|5x-2\right|-\left|3x+\dfrac{1}{2}\right|=0\)
\(\Leftrightarrow\left|5x-2\right|=\left|3x+\dfrac{1}{2}\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-2=3x+\dfrac{1}{2}\\5x-2=-3x-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{5}{2}\\8x=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{3}{16}\end{matrix}\right.\)
4: Ta có: \(\left|2x-1\right|=x+\dfrac{4}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{4}{3}\left(x\ge\dfrac{1}{2}\right)\\1-2x=x+\dfrac{4}{3}\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=\dfrac{4}{3}+1\\-2x-x=\dfrac{4}{3}-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\-3x=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{1}{9}\end{matrix}\right.\)
a) \(\left(\frac{1}{2}\right)^5=\frac{1}{32}\)
b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^3\)