Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây là bất đẳng thức
giải cho 1 bài thôi:
(x-2)(x+2)<0
=>x-2 và x+2 trái dấu
mà x-2<x+2
=>x-2<0 và x+2>0
=>x<-2 và x>-2
=>-2<x<2=>x E {-1;0;1}
còn lại tương tự
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
a) (x+5)^5=2^10 =>(x+5)^5=4^5 =>x+5=4=>x=-1
b) 5^x:5^2=125 =>5^x:5^2=5^3 =>5^x=5^3.5^2=5^5 =>5^x=5^5=>x=5
c) (x+1)^2=(x+1)^0 =>x=0 hoặc 1
d) (2+x)+(4+x)+...+(52+x) =780 =>(x+x+...+x) +(2+4+...+52)=780 =>26x+(52+2).26:2=780 =>26x=780-702 =>26x=78=>x=3
d+e) áp dụng công thức ƯC và BC bn nhé. Nếu trình bày ra hơi dài nên bn tự làm nhé.
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
a, \(x^2-9=0\Rightarrow x^2=9\Rightarrow x\pm3\)
b, \(\left(x-3\right)^2-25=0\Rightarrow\left(x-3\right)^2=25\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
c, \(\left(x-3\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)
d, \(\left(x-3\right)x-2\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
e, \(3x\left(x-1\right)-5\left(1-x\right)=0\)
\(\Rightarrow3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
g, \(x^2+6x-7=0\)
\(\Rightarrow x^2-x+7x-7=0\)
\(\Rightarrow x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
h,\(2x^2+5x-7=0\)
\(\Rightarrow2x^2-2x+7x-7=0\)
\(\Rightarrow2x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Chúc bạn học tốt!!!
a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) vậy \(x=3;x=-3\)
b) \(\left(x-3\right)^2-25=0\Leftrightarrow\left(x-3\right)^2=25\Leftrightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
vậy \(x=8;x=-2\)
c) \(\left(x-3\right)\left(2x-5\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)
vậy \(x=3;x=\dfrac{5}{2}\)
d)\(\left(x-3\right).x-2\left(x-3\right)=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) vậy \(x=2;x=3\)
e) \(3x\left(x-1\right)-5\left(1-x\right)=0\Leftrightarrow\left(3x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-5}{3};x=1\)
câu e t thấy sai sai nhưng vẫn làm ; bn coi lại đề nha
g) \(x^2+6x-7=0\Leftrightarrow x^2-x+7x-7=0\)
\(\Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(x+7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\) vậy \(x=-7;x=1\)
h) \(2x^2+5x-7=0\Leftrightarrow2x^2-2x+7x-7=0\)
\(\Leftrightarrow2x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(2x+7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-7}{2};x=1\)
\(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(2x+1=5\)
\(2x=4\)
\(x=2\)
\(b,x^6=x^2\)
\(x^6-x^2=0\)
\(x^2\cdot\left(x^4-1\right)=0\)
\(\orbr{\begin{cases}x^2=0\\x^4-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(c\text{}\text{}\text{}\text{},\left(x-2\right)\cdot\left(x-5\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d,x^{10}-x^5=0\)
\(x^5\cdot\left(x^5-1\right)=0\)
\(\orbr{\begin{cases}x^5=0\\x^5=1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
\(e,\left(x-5\right)^4=\left(x-5\right)^6\)
\(\left(x-5\right)^4-\left(x-5\right)^6=0\)
\(\left(x-5\right)^4\cdot\left[1-\left(x-5\right)^2\right]=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm1+5\end{cases}}}\)
\(\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)
\(\left(2x+1\right)^3=125\Rightarrow\left(2x+1\right)^3==5^3\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1=4\Rightarrow x=4:2=2\)
\(x^6=x^2\Rightarrow x^2.x^4=x^2\)Vì vậy nên \(x=\pm1\)
\(\left(x-2\right)\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\Rightarrow x=0+2=5\\x-5=0\Rightarrow X=0+5=5\end{cases}}\)
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }