Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(2x+1=5\)
\(2x=4\)
\(x=2\)
\(b,x^6=x^2\)
\(x^6-x^2=0\)
\(x^2\cdot\left(x^4-1\right)=0\)
\(\orbr{\begin{cases}x^2=0\\x^4-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(c\text{}\text{}\text{}\text{},\left(x-2\right)\cdot\left(x-5\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d,x^{10}-x^5=0\)
\(x^5\cdot\left(x^5-1\right)=0\)
\(\orbr{\begin{cases}x^5=0\\x^5=1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
\(e,\left(x-5\right)^4=\left(x-5\right)^6\)
\(\left(x-5\right)^4-\left(x-5\right)^6=0\)
\(\left(x-5\right)^4\cdot\left[1-\left(x-5\right)^2\right]=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm1+5\end{cases}}}\)
\(\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)
\(\left(2x+1\right)^3=125\Rightarrow\left(2x+1\right)^3==5^3\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1=4\Rightarrow x=4:2=2\)
\(x^6=x^2\Rightarrow x^2.x^4=x^2\)Vì vậy nên \(x=\pm1\)
\(\left(x-2\right)\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\Rightarrow x=0+2=5\\x-5=0\Rightarrow X=0+5=5\end{cases}}\)
a) \(2\left(x-5\right)-3\left(x+7\right)=14\)
\(\Leftrightarrow2x-10-3x-21=14\)
\(\Leftrightarrow-x-31=14\)
\(\Leftrightarrow-x=45\Leftrightarrow x=-45\)
b) \(5\left(x-6\right)-2\left(x+3\right)=12\)
\(\Leftrightarrow5x-30-2x-6=12\)
\(\Leftrightarrow3x-36=12\)
\(\Leftrightarrow3x=48\Leftrightarrow x=16\)
c) \(3\left(x-4\right)-\left(8-x\right)=12\)
\(\Leftrightarrow3x-12-8+x=12\)
\(\Leftrightarrow4x-20=12\)
\(\Leftrightarrow4x=32\Leftrightarrow x=8\)
d) \(-7\left(3x-5\right)+2\left(7x-14\right)=28\)
\(\Leftrightarrow-21x+35+14x-28=28\)
\(\Leftrightarrow-7x+35=0\Leftrightarrow x=5\)
a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
d,
|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
2.Tìm x, y, z biết
a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
b: =>3|x-5|=8+4=12
=>|x-5|=4
=>x-5=4 hoặc x-5=-4
=>x=9 hoặc x=1
d: =>2x+6=3-3x-2
=>2x+6=1-3x
=>5x=-5
hay x=-1
e: \(\Leftrightarrow x-3\inƯC\left(70;98\right)\)
\(\Leftrightarrow x-3\in\left\{1;2;7;14\right\}\)
mà x>8
nên \(x\in\left\{10;17\right\}\)
a) \(\frac{2}{5}x-x=\frac{\left(-2018\right)^0}{5^2}\\ x\left(\frac{2}{5}-1\right)=\frac{1}{25}\\ x\left(\frac{2}{5}-\frac{5}{5}\right)=\frac{1}{25}\\ x\cdot\frac{-3}{5}=\frac{1}{25}\\ x=\frac{1}{25}:\frac{-3}{5}\\ x=\frac{1}{25}\cdot\frac{-5}{3}\\ x=\frac{-1}{15}\)Vậy \(x=\frac{-1}{15}\)
b) \(\left|-1\frac{1}{2}x+2x\right|-\frac{7}{4}=0,5\\ \left|x\left(-1\frac{1}{2}+2\right)\right|-\frac{7}{4}=\frac{1}{2}\\ \left|x\cdot\frac{1}{2}\right|=\frac{1}{2}+\frac{7}{4}\\ \left|x\cdot\frac{1}{2}\right|=\frac{2}{4}+\frac{7}{4}\\ \left|x\cdot\frac{1}{2}\right|=\frac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x\cdot\frac{1}{2}=\frac{9}{4}\\x\cdot\frac{1}{2}=\frac{-9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{4}:\frac{1}{2}\\x=\frac{-9}{4}:\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{4}\cdot2\\x=\frac{-9}{4}\cdot2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\x=\frac{-9}{2}\end{matrix}\right.\)Vậy \(x\in\left\{\frac{9}{2};\frac{-9}{2}\right\}\)
c) \(x+\left(x+\frac{2}{7}\right)+\frac{-5}{11}=\frac{4}{11}\\ x+x+\frac{2}{7}=\frac{4}{11}-\frac{-5}{11}\\ 2x+\frac{2}{7}=\frac{4}{11}+\frac{5}{11}\\ 2x+\frac{2}{7}=\frac{9}{11}\\ 2x=\frac{9}{11}-\frac{2}{7}\\ 2x=\frac{63}{77}-\frac{22}{77}\\ 2x=\frac{41}{77}\\ x=\frac{41}{77}:2\\ x=\frac{41}{77\cdot2}\\ x=\frac{41}{154}\)Vậy \(x=\frac{41}{154}\)
d) \(\left|0,25x-20\%\right|+\frac{3}{8}=1\frac{3}{8}\\ \left|\frac{1}{4}x-\frac{1}{5}\right|=1\frac{3}{8}-\frac{3}{8}\\ \left|\frac{1}{4}x-\frac{1}{5}\right|=1\\ \Rightarrow\left[{}\begin{matrix}\frac{1}{4}x-\frac{1}{5}=1\\\frac{1}{4}x-\frac{1}{5}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=1+\frac{1}{5}\\\frac{1}{4}x=\left(-1\right)+\frac{1}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=\frac{5}{5}+\frac{1}{5}\\\frac{1}{4}x=\frac{-5}{5}+\frac{1}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{1}{4}x=\frac{6}{5}\\\frac{1}{4}x=\frac{-4}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{6}{5}:\frac{1}{4}\\x=\frac{-4}{5}:\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{6}{5}\cdot4\\x=\frac{-4}{5}\cdot4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{24}{5}\\x=\frac{-16}{5}\end{matrix}\right.\)Vậy \(x\in\left\{\frac{24}{5};\frac{-16}{5}\right\}\)
a ) Ta có : 4(x - 5) - 3(x + 7) = -19
<=> 4x - 20 - 3x - 21 = -19
=> x - 41 = -19
=> x = -19 + 41
=> x = 22
b) Ta có " 7(x - 3) - 5(3 - x) = 11x - 5
<=> 7x - 21 - 15 + 5x = 11x - 5
<=> 12x - 36 = 11x - 5
=> 12x - 11x = -5 + 36
=> x = 31
a/ Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\y^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left|x-2\right|+y^2\ge0\)
\(\Leftrightarrow\left|x-2\right|+y^2+5\ge5\)
\(\Leftrightarrow A\ge5\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Vậy...
b/ Với mọi x ta có :
\(\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|-1\ge-1\)
\(\Leftrightarrow B\ge-1\)
Dấu "=" xảy ra khi :
\(\left|x-2\right|=0\Leftrightarrow x=2\)
Vậy ....
c/ Với mọi x ta có :
\(\left|1-x\right|\ge0\)
\(\Leftrightarrow2\left|1-x\right|\ge0\)
\(\Leftrightarrow2\left|1-x\right|+1\ge1\)
\(\Leftrightarrow C\ge1\)
Dấu "=" xảy ra khi :
\(\left|1-x\right|=0\Leftrightarrow x=1\)
Vậy ...
1.
a.\(\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
b. \(\left(\frac{1}{2}\right)^3=\frac{1}{8}\)
c. \(\left(\frac{-3}{5}\right)^5=\frac{-243}{3125}\)
d. \(\left(\frac{-1}{5}\right)^2=\frac{1}{25}\)
e. \(\left(\frac{-1}{6}\right)^3=\frac{-1}{216}\)
Trả lời:
Bài 1:
a, \(\left(\frac{1}{2}\right)^4=\frac{1^4}{2^4}=\frac{1}{16}\)
b, \(\left(\frac{1}{2}\right)^3=\frac{1^3}{2^3}=\frac{1}{8}\)
c, \(\left(\frac{-3}{5}\right)^2=\frac{\left(-3\right)^2}{5^2}=\frac{9}{25}\)
d, \(\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)
e, \(\left(\frac{-1}{6}\right)^3=\frac{\left(-1\right)^3}{6^3}=\frac{-1}{216}\)
Bài 2:
a, \(\left(\frac{3}{2}\right)^2.\left(\frac{4}{3}\right)^2=\frac{9}{4}.\frac{16}{9}=4\)
b, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)
c, \(\left(-\frac{1}{2}\right)^2.\left(\frac{2}{5}\right)^2=\frac{1}{4}.\frac{4}{25}=\frac{1}{25}\)
d, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)
e, \(\left(-5\right)^3.\frac{1}{5}=-125.\frac{1}{5}=-25\)
f, \(\left(\frac{2}{9}\right)^5.\left(-\frac{27}{4}\right)^5=\frac{2^5}{9^5}.\frac{\left(-27\right)^5}{4^5}=\frac{2^5.\left(-27\right)^5}{9^5.4^5}=\frac{2^5.\left[\left(-3\right)^3\right]^5}{\left(3^2\right)^5.\left(2^2\right)^5}=-\frac{2^5.3^{15}}{3^{10}.2^{10}}=\frac{3^5}{2^5}\)
ghi thế chẳng hiểu j