Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-1}=3.\) \(\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3\)
\(\sqrt{x-1}^2=3^2\)
\(x-1=9\)
\(x=9+1\)
\(\Rightarrow x=10\)
Ta có công thức : \(\sqrt{x-1}^2=n^2\) thì mới phá được dấu căn bậc 2
Nên ta làm như sau :
\(\sqrt{x-1}=3.\) \(\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3\)
\(\sqrt{x-1}^2=3^2\)
\(x-1=9\)
\(x=9+1\)
\(\Rightarrow x=10\)
\(\sqrt{x-1}=3.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=3\)
\(\sqrt{x-1}^2=3^2\)
\(x-1=9\)
\(x=9+1\)
\(\Rightarrow x=10\)
Sửa đề
\(\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left|2x-y-z\right|=0\)
Vì \(\hept{\begin{cases}\left(x-1\right)^{2018}\ge0\forall x\\\left(y+3\right)^{2020}\ge0\forall y\\\left|2x-y-z\right|\ge0\forall x,y,z\end{cases}\Rightarrow\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left|2x-y-z\right|\ge0\forall x,y,z}\)
Dấu " = " xảy ra khi :
( x - 1 )2018 = 0
=> x = 1
( y + 3 )2020 = 0
=> y = - 3
Thay x = 1 ; y = -3 và | 2x - y - z | ta đc
| 2.1 + 3 - z | = 0
=> | 5 - z | = 0
=> z = 5
Vậy x = 1 ; y = -3 ; z = 5
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}^2=5^2\)
\(x-1=25\)
\(x=25+1\)
\(\Rightarrow x=26\)
Mình làm hơi tắt, để mình làm lại nhé!
\(\sqrt{x-1}=5.\left(2018+2019+2020\right)^0\)
\(\sqrt{x-1}=5\)
\(\sqrt{x-1}^2=5^2\)
\(x-1=25\)
\(x=25+1\)
\(\Rightarrow x=26\)
\(\left(x-1\right)^4=\left(1-x\right)^6\Leftrightarrow\left(x-1\right)^4=\left(x-1\right)^6\)
\(\Leftrightarrow\left(x-1\right)^4\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^4=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)
a, (x-1)4=(1-x)6
⇒ (x-1)4=(x-1)6
⇒ (x-1)4 - (x-1)6 =0
⇒ (x-1)4 (1-(x-1)6)=0
⇒ \(\left[{}\begin{matrix}\left(x-1\right)^4=0\\1-\left(x-1\right)^6=0\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^6=1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=1\\x-6=1\\x-6=-1\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=1\\x=7\\x=5\end{matrix}\right.\)
Vậy x ∈ \(\left\{1;7;5\right\}\)
\(\text{Ta có:}\left(x+2019\right)^{2018}\ge0với\forall x\)
\(|y-2020|\ge0với\forall y\)
\(\Rightarrow\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|\ge0với\forall x,y\)
\(\text{Mà }\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|=0\)\(\text{(Theo đề bài)}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2019\right)^{2018}=0\\|y-2020|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2019=0\\y-2020=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=-2019\\y=2020\end{cases}}\)
\(\Rightarrow M=x+y=-2019+2020=1\)
(x-2020)x - 1 - (x - 2020)x + 2019 = 0
=> (x - 2020)x - 1 .[(x - 2020)2020 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-2020\right)^{x-1}=0\\\left(x-2020\right)^{2020}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-2020=0\\\left(x-2020\right)^{2020}=1^{2020}\end{cases}\Rightarrow}\orbr{\begin{cases}x-2020=0\\x-2020=\pm1\end{cases}}}\)
=> \(x-2020\in\left\{0;1;-1\right\}\Rightarrow x\in\left\{2020;2021;2019\right\}\)