Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\sqrt{x}^2-1}\right).\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}^2-1}=\frac{2}{x-1}\)
\(C=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\sqrt{x}-1}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)
\(a,\sqrt{\frac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}}\)
\(=\sqrt{\frac{5.\left(38-17\right)\left(38+17\right)}{8.\left(47-19\right)\left(47+19\right)}}\)
\(=\sqrt{\frac{5.21.55}{8.28.66}}\)
\(=\sqrt{\frac{5775}{14784}}=\frac{5\sqrt{231}}{2\sqrt{4370}}\)
Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai
Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé
ĐK x khác 4 và x không âm
\(=\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{4-x}\\ =\frac{8\sqrt{x}+4x}{4-x}\\ =\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\\ =\frac{4\sqrt{x}}{2-\sqrt{x}}\)
Cảm ơn ạ