Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đơn giản là dùng phép thế:
\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)
\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)
Thế vào pt cuối:
\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)
Vậy là xong
b/ Sử dụng hệ số bất định:
\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)
\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)
Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):
\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)
ĐKXĐ: ...
\(\left\{{}\begin{matrix}x+y+z=3\\xy+yz+zx=\frac{1}{3}xyz\\x^2+y^2+z^2=17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=3\\xy+yz+zx=\frac{1}{3}xyz\\xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=3-x\\yz=-4-x\left(y+z\right)=-4-x\left(3-x\right)\\xyz=-12\end{matrix}\right.\)
\(\Rightarrow x\left(-4-3x+x^2\right)=-12\)
\(\Leftrightarrow x^3-3x^2-4x+12=0\)
\(\Leftrightarrow...\)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
\(a)DK:z\ne1\)
\(\left\{{}\begin{matrix}\frac{4}{z-1}+2x=7\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{z-1}+x=\frac{7}{2}=3,5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-5y=-5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y=-8\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\5x=15\\\frac{2}{z-1}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(T/m\right)\)
Vậy ...
\(b)DK:\left\{{}\begin{matrix}x,y,z\ne0\\x,y,z>0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{matrix}\right.\)
\(\Leftrightarrow x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}=6\)
\(\Leftrightarrow\left(x-2.\sqrt{x}.\frac{1}{\sqrt{x}}+\frac{1}{x}\right)+\left(y-2.\sqrt{y}.\frac{1}{\sqrt{y}}+\frac{1}{y}\right)+\left(z-2\sqrt{z}.\frac{1}{\sqrt{z}}+\frac{1}{z}\right)+2+2+2=6\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=0\)
Vì \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2;\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2;\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=\frac{1}{\sqrt{x}}\\\sqrt{y}=\frac{1}{\sqrt{y}}\\\sqrt{z}=\frac{1}{\sqrt{z}}\end{matrix}\right.\)
\(\Leftrightarrow x=y=z=1\left(T/m\right)\)
Vậy ...
\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)
\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)
Áp dụng bđt AM-GM ta có
\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)
\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)
Dấu "=" xảy ra khi a=b=c=1
a/ Một cách đơn giản hơn:
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
\(P=\frac{x-\frac{1}{2}+y-\frac{1}{2}}{y^2}+\frac{y-\frac{1}{2}+z-\frac{1}{2}}{z^2}+\frac{z-\frac{1}{2}+x-\frac{1}{2}}{x^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P=\left(x-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(y-\frac{1}{2}\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)+\left(z-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\ge\frac{2}{xy}\left(x-\frac{1}{2}\right)+\frac{2}{yz}\left(y-\frac{1}{2}\right)+\frac{2}{zx}\left(z-\frac{1}{2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\)
\(P\ge\sqrt{3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}-1=\sqrt{3}-1\)
\(P_{min}=\sqrt{3}-1\) khi \(x=y=z=\sqrt{3}\)
a.
\(\frac{3x-36}{12}=\frac{5y-45}{15}=\frac{z-1}{1}=\frac{3x+5y-z-50}{26}=\frac{-48}{26}\)
\(\Rightarrow\frac{x-12}{4}=\frac{-48}{26}\Rightarrow x=...\)
Tương tự với y, z, nhưng chắc bạn nhầm đề, nếu pt bên dưới là -2 thì nó ra \(\frac{-52}{26}=-2\) kết quả đẹp hơn nhiều
b. Không rõ đề
c.
\(x+y+z=9\Rightarrow\left(x+y+z\right)^2=81=3.27=3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\Rightarrow\frac{3}{x}=1\Rightarrow x=y=z=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:
\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)
\(\Rightarrow yz=5xy\Rightarrow z=5x\)
Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)
\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)
Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)
\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)
Mới nghĩ ra 3 câu:
a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)
\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)
\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)
c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)
\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)
Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)
\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)
\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)
d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm
Mn giúp e vs ạ! Thanks!