Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+10y=6\\15x-10y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{34}{19}\\y=\dfrac{25}{19}\end{matrix}\right.\)
b: x+3y=5 và 2x-5y=-1
=>2x+6y=10 và 2x-5y=-1
=>11y=11 và x+3y=5
=>y=1 và x=2
c: 3x-4y=18 và 2x+y=1
=>3x-4y=18 và 8x+4y=4
=>11x=22 và 2x+y=1
=>x=2 và y=1-2*2=-3
![](https://rs.olm.vn/images/avt/0.png?1311)
Tất cả các bài đều là dạng hệ đơn giản giống nhau, trừ câu l đề có vấn đề ra thì đều giải một cách đơn giản bằng phương pháp cộng đại số được, ko có gì khó cả.
Ví dụ câu a:
\(\left\{{}\begin{matrix}80x+81y=12,1\\x+y=0,15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}80x+81y=12,1\\-81x-81y=-12,15\end{matrix}\right.\)
Cộng hai pt lại:
\(-x=-\frac{1}{20}\Rightarrow x=\frac{1}{20}\)
Thay vào pt \(x+y=0,15\Rightarrow y=0,15-x=\frac{1}{10}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\frac{1}{20};\frac{1}{10}\right)\)
Các câu khác làm tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0
=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0
=>x=1 và y=-2 và x^2+2x+y=0
=>Hệ vô nghiệm
a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)
=>y=-2; 3x+4+2x-5=14; z=2x-5
=>y=-2; x=3; z=2*3-5=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: 2x+y=1 và x-y=2
=>3x=3 và x-y=2
=>x=1 và y=-1
b: x+2y=2 và x+2y=5
=>0x=-3 và x+2y=2
=>\(\left(x,y\right)\in\varnothing\)
c: 2x+y=3 và -2x-y=-3
=>0x=0 và 2x+y=3
=>\(\left\{{}\begin{matrix}x\in R\\y=3-2x\end{matrix}\right.\)