\(\left\{{}\begin{matrix}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{matrix}\right.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} xy+1=7y-x\\ (xy+1)^2-xy=13y^2\end{matrix}\right.\)

\(\Rightarrow (7y-x)^2-xy=13y^2\)

\(\Leftrightarrow 36y^2-15xy+x^2=0\)

\(\Leftrightarrow (12y-x)(3y-x)=0\)

\(\Rightarrow \left[\begin{matrix} x=12y\\ x=3y\end{matrix}\right.\)

Nếu \(x=12y\). Thay vào PT(1):

\(12y.y+12y+1=7y\)

\(\Leftrightarrow 12y^2+5y+1=0\) (pt vô nghiệm)

Nếu \(x=3y\Rightarrow 3y.y+3y+1=7y\)

\(\Leftrightarrow 3y^2-4y+1=0\)

\(\Leftrightarrow (3y-1)(y-1)=0\Rightarrow \left[\begin{matrix} y=\frac{1}{3}\rightarrow x=1\\ y=1\rightarrow x=3\end{matrix}\right.\)

Vậy HPT có nghiệm \((x;y)=(1;\frac{1}{3}); (3;1)\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Hoặc đến đoạn $36y^2-15xy+x^2=0$ nếu bạn không biết xử lý ra sao thì có thể thực hiện cách sau:

Dễ thấy $y=0$ không phải nghiệm của HPT. Do đó $y\neq 0$

Đặt $x=ty$

\(\Rightarrow 36y^2-15.ty.y+(ty)^2=0\)

\(\Leftrightarrow y^2(36-15t+t^2)=0\)

\(\Rightarrow 36-15t+t^2=0\) (do $y\neq 0$)

Đến đây ta giải PT bậc 2 một ẩn như bình thường để tìm ra mối quan hệ của $x,y$

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

NV
13 tháng 12 2020

- Với \(y=0\) không phải nghiệm

- Với \(y\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{x}{y}+\dfrac{1}{y}=7\\x^2+\dfrac{x}{y}+\dfrac{1}{y^2}=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}+\dfrac{x}{y}=7\\\left(x+\dfrac{1}{y}\right)^2-\dfrac{x}{y}=13\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{1}{y}\right)^2+x+\dfrac{1}{y}-20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{y}=4\\x+\dfrac{1}{y}=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4-\dfrac{1}{y}\\x=-5-\dfrac{1}{y}\end{matrix}\right.\)

Thế vào pt đầu...

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

5 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)

\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)

cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ

suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý

vậy pt vô nghiệm