Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1/a+1/b)(a+b)=a/a+b/a+b/b+a/b=2+a/b+b/a
Áp dụng BDT Cô-si: a/b + b/a \(\ge\)2\(\sqrt{\frac{a}{b}\cdot\frac{b}{a}}\)=2
=> (1/a+1/b)(a+b)\(\ge\)1+1+2=4
\(B=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(B=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Ta cần CM \(\frac{a}{b}+\frac{b}{a}\ge2\)
Áp dụng BĐT Cô-si:\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Tương tự,ta cũng có:\(\frac{b}{c}+\frac{c}{b}\ge2;\frac{a}{c}+\frac{c}{a}\ge2\)
\(\Rightarrow B\ge2+2+2=6\left(đpcm\right)\)
(*) t chỉ ms lớp 7 thôi nên cũng ko chắc đúng ko nhé!
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(đpcm)
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3
e)\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=1+\frac{b}{a}+\frac{a}{b}+1\)
\(=\left(1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)
\(=2+\left(\frac{a.a}{b.a}+\frac{b.b}{a.b}\right)\)
\(=2+\frac{a.a+b.b}{b.a}\)
Vì \(\frac{a.a+b.b}{a.b}>=2\)
Nên \(2+\frac{a.a+b.b}{a.b}>=2+2=4\)
Hay \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)
a) \(a^2+b^2-2ab\)
\(=\left(a-b\right)^2\)
Vì \(\left(a-b\right)^2\) là binh phương của một số nên \(\left(a-b\right)^2>=0\)
Hay \(a^2+b^2-2ab>=0\)
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
phân tích lần lượt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1\)(tự nhân ra hộ mình nhé)
\(=\left(a+b+c\right)-\left(ab+bc+ca\right)\)(vì abc=1)
Theo đề bài ta có: \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=ab+bc+ca\)(vì abc=1)
\(\Rightarrow\left(a+b+c\right)-\left(ab+bc+ca\right)>0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
Áp dụng bất đẳng thức cô si cho 2 số không âm, ta có :
\(a+b\ge2\sqrt{ab}\) ( 1 )
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\) ( 2 )
Từ ( 1 ) và ( 2 ) nhân vế theo vế, ta có :
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\) đpcm
Lời giải:
Với $a,b>0$:
$(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)\geq 4$
$\Leftrightarrow (a+b).\frac{a+b}{ab}\geq 4$
$\Leftrightarrow (a+b)^2\geq 4ab$
$\Leftrightarrow (a+b)^2-4ab\geq 0$
$\Leftrightarrow a^2-2ab+b^2\geq 0$
$\Leftrightarrow (a-b)^2\geq 0$ (luôn đúng)
Do đó BĐT trên được chứng minh
Dấu "=" xảy ra khi $a=b$