K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Đặt:  \(a-b=x;\)\(b-c=y;\)\(c-a=z\)

=> \(x+y+z=a-b+b-c+c-a=0\)

=>  \(x+y=-z\)

=>  \(\left(x+y\right)^3=-z^3\)

Ta có:  \(x^3+y^3-z^3=x^3+y^3+\left(x+y\right)^3=\left(x+y\right)\left(2x^2+xy+2y^2\right)\)

đến đây bạn thay trở lại nhé

20 tháng 7 2017

a,\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)

Tương tự :

\(\left(b+c-a\right)^3=b^3+c^3-a^3+3\left(a^2b-b^2a+ca^2-ac^2+b^2c+c^2b\right)\)

\(\left(b+a-c\right)^3=b^3-c^3+a^3+3\left(a^2b+b^2a-ca^2+ac^2-b^2c+c^2b\right)\)

\(\left(a+c-b\right)^3=c^3+a^3-b^3+3\left(-a^2b+b^2a+ca^2+ac^2+b^2c-c^2b\right)\)

Biểu thức sau khi rút gọn ta được 

24abc

20 tháng 7 2017

b,\(\left(a+b\right)^3=a^3+b^3+3\left(a^2b+b^2a\right)\)

\(\left(c+b\right)^3=c^3+b^3+3\left(c^2b+b^2c\right)\)

\(\left(a+c\right)^3=a^3+c^3+3\left(a^2c+b^2c\right)\)

=>\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3=\)\(2\left(a^2+b^2+c^2\right)+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)

Lại có 

\(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b+2abc\right)\right)\)

Biểu thức khi đó trở thành 

\(2\left(a^2+b^2+c^2\right)-6abc=2\left(a^2+b^2+c^2-3abc\right)\)

Tặng vk iu 

24 tháng 8 2018

nhiều thế, đăng ít một thôi bạn

24 tháng 8 2018

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

 Châu ơi!đăng làm j z