\(\left[1-\frac{1}{21}\right]\cdot\left[1-\frac{1}{28}\right]\cdot\left[1-\frac{1}{36}\right]\cd...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(\left[1-\frac{1}{21}\right]\times\left[1-\frac{1}{28}\right]\times\left[1-\frac{1}{36}\right]\times...\times\left[1-\frac{1}{1326}\right]\)

\(=\frac{20}{21}\times\frac{27}{28}\times\frac{35}{36}\times...\times\frac{1325}{1326}\)

\(=\frac{40}{42}\times\frac{54}{56}\times\frac{70}{72}\times...\times\frac{2650}{2652}\)

\(=\frac{5\times8}{6\times7}\times\frac{6\times9}{7\times8}\times\frac{7\times10}{8\times9}\times...\times\frac{50\times53}{51\times52}\)

\(=\frac{5\times6\times7\times...\times50}{6\times7\times8\times...\times51}\times\frac{8\times9\times10\times...\times53}{7\times8\times9\times...\times52}\)

\(=\frac{5}{51}\times\frac{53}{7}\)

\(=\frac{265}{357}\)

3 tháng 3 2020

= 20/21 . 27/28 . 35/36 . ...... 1325/1326

= 2/2(20/21 . 27/28 . 35/36 . ...... 1325/1326)

= 40/42. 54/56 . 70/72 ......2650/2652

= 5.8 / 6.7 . 6.9/ 7.8 . 7.10/8.9 ..... 50.53/51.52

.......Sau đọc t cũng k hiểu nữa

Nguồn: của bn Thành :>>>>>

26 tháng 7 2019

#)Giải :

\(\left(1-\frac{1}{15}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)...\left(1-\frac{1}{210}\right)=\frac{14}{15}\times\frac{20}{21}\times\frac{27}{28}\times...\times\frac{209}{210}\)

\(=\frac{28}{30}\times\frac{40}{42}\times\frac{54}{56}\times...\times\frac{418}{420}=\frac{4\times7}{5\times6}\times\frac{5\times8}{6\times7}\times\frac{6\times9}{7\times8}\times...\times\frac{19\times22}{20\times21}\)

\(=\frac{4\times5\times6\times...\times19}{5\times6\times7\times...\times20}\times\frac{7\times8\times9\times...\times22}{6\times7\times8\times...\times21}=\frac{4}{20}\times\frac{22}{6}=\frac{11}{15}\)

\(\left(1-\frac{1}{15}\right).\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right).....\left(1-\frac{1}{210}\right)\)

\(=\left(\frac{15}{15}-\frac{1}{15}\right).\left(\frac{21}{21}-\frac{1}{21}\right).\left(\frac{28}{28}-\frac{1}{28}\right).....\left(\frac{210}{210}-\frac{1}{210}\right)\)

\(=\frac{14}{15}.\frac{20}{21}.\frac{27}{28}....\frac{209}{210}\)

\(=\frac{2.7}{3.5}.\frac{5.4}{7.3}.\frac{3.9}{4.7}....\frac{11.19}{21.10}\)

\(=\frac{2}{3}.\frac{19}{10}\)

\(=\frac{19}{15}\)

26 tháng 6 2016

\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)

\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)

\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)

Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:

\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)

\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)

8 tháng 3 2019

Mk ko biết lm nhưng cứ k thoải mái nha

SORRY

24 tháng 7 2018

= (1/2).(2/3).(4/5).(5/6)......(2016/2017).(2017/2018)

=1.2.3.4.5......2016.2017/2.3.4.5.....2017.2018

=1/2018

24 tháng 7 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)

\(=\frac{1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot2016\cdot2017}{2\cdot3\cdot4\cdot\cdot\cdot\cdot2017\cdot2018}\)

\(=\frac{1}{2018}\)

17 tháng 4 2019

G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)                         

=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)

=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)

=> G = \(\frac{2.50}{1.51}\)

=> G = \(\frac{100}{51}\)

17 tháng 4 2019

公关稿黄继线长旧款您