Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1+2+...+n=\frac{\left(n+1\right)n}{2}\)
\(\Rightarrow\frac{1}{1+2+...+n}=\frac{2}{n\left(n+1\right)}\)
\(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}\)
\(=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Vậy nên:
\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+2012}\right)\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}....\frac{2011.2014}{2012.2013}\)
\(=\frac{1}{3}.\frac{2014}{2012}=\frac{1007}{3018}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\left(\frac{1}{2013}-1\right)\)
\(=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-2011}{2012}.\frac{-2012}{2013}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2011}{2012}.\frac{2012}{2013}\)(vì có 2012 thừa số âm nên kết quả là dương)
\(=\frac{1}{2013}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)
a) \(\left(-\frac{2}{3}\right)^2:\frac{1}{3}-\left|-1\frac{1}{2}\right|=\frac{4}{9}:\frac{1}{3}-\frac{3}{2}=\frac{4}{3}-\frac{3}{2}=-\frac{1}{6}\)
b) \(\left(\frac{1}{2}-\frac{3}{5}\right)^2+\frac{2}{3}\left|\frac{3}{4}-\frac{1}{2}\right|+2012^0=\left(-\frac{1}{10}\right)^2+\frac{2}{3},\frac{1}{4}+2012^0\)
\(=\frac{1}{100}+\frac{1}{6}+1=\frac{353}{300}\)
c) \(\left(3^2:\frac{1}{3}\right)+2^3+\frac{1}{2}+\frac{1}{4}-6=3^3+2^3+\frac{3}{4}-6=29\frac{3}{4}\)
wtf, avatar??
avatar lm sao