Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
b: \(A=\dfrac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x}{2x-6}\)
Để A=0 thì 3x=0
hay x=0
a) \(4\left(a+b\right)ab=3\left(a-b\right)^2+\left(a+b\right)^2\Leftrightarrow4\left(a+b\right)ab=4a^2+4b^2-4ab\Leftrightarrow\left(a+b\right)ab=a^2+b^2-ab\) (đúng)
=> đẳng thức được cm
b) nếu nghĩ ra thì tớ giải cho
Ta có: \(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)
\(\Leftrightarrow3x-y+2x+y=10z\)
\(\Leftrightarrow5x=10z\)
hay x=2z
Thay x=2z vào biểu thức 3x-y=3z, ta được:
\(3\cdot2z-y=3z\)
\(\Leftrightarrow6z-y=3z\)
hay y=3z
Thay x=2z và y=3z vào biểu thức \(M=\dfrac{x^2-2xy}{x^2+y^2}\), ta được:
\(M=\dfrac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{13z^2}=\dfrac{-8z^2}{13z^2}=\dfrac{-8}{13}\)
Vậy: \(M=\dfrac{-8}{13}\)
\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)
Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)
Bài 1:
\(P=\left(\dfrac{x-\sqrt{x}-2+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{x-\sqrt{x}+2-x-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{-2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}-1}=\dfrac{-2}{\sqrt{x}+1}\)
\(\left\{{}\begin{matrix}x+y=m-1\\x-y=m+3\end{matrix}\right.\)
\(\Rightarrow x+y+x-y=m-1+m+3\)
\(\Rightarrow2x=2m+2\Rightarrow x=m+1\)
\(\Rightarrow x_0=m+1\) (1)
\(\left\{{}\begin{matrix}x+y=m-1\\x-y=m+3\end{matrix}\right.\)
\(\Rightarrow x+y-\left(x-y\right)=m-1-\left(m+3\right)\)
\(\Rightarrow2y=-4\Rightarrow y=-2\Rightarrow y_0=-2\Rightarrow y_0^2=4\) (2)
-Từ (1) và (2) suy ra:
\(m+1=4\Rightarrow m=3\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Annie Scarlet - Toán lớp 9 | Học trực tuyến