Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) (với \(a = - \frac{1}{6}\))
\(=(- \frac{1}{6})^{3. 4}=(- \frac{1}{6})^{12}\)
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) (với \(a = - 0,2\))
\(=(-0,2)^{4.5}=(-0,2)^{20}\)
Lũy thừa | \({\left( {\frac{{ - 3}}{2}} \right)^4}\) | \({\left( {0,1} \right)^3}\) | \({\left( {1,5} \right)^2}\) | \({\left( {\frac{1}{3}} \right)^4}\) | \({2^0}\) |
Cơ số | \(\frac{{ - 3}}{2}\) | \(0,1\) | 1,5 | \(\frac{1}{3}\) | 2 |
Số mũ | 4 | \(3\) | 2 | 4 | 0 |
Giá trị lũy thừa | \(\frac{{81}}{{16}}\) | \(0,001\) | \(2,25\) | \(\frac{1}{{81}}\) | 1 |
Ta có :
\(\left(-\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\left(-\frac{1}{2}\right)^3=-\frac{1}{8}\)
\(\left(-\frac{1}{2}\right)^4=\frac{1}{16}\)
\(\left(-\frac{1}{2}\right)^5=-\frac{1}{32}\)
Với các số hữu tỉ âm , lúy thừa mũ chẵn thì có kết quả dương ; lũy thừa mũ lẻ có kết quả âm
Nhận xét:
Lũy thừa với số mũ chẵn của một số âm là một số dương
Lũy thừa với số mũ lẻ của một số âm là một số âm
a)
\(\begin{array}{l}\left( {0,25 - \frac{5}{6}} \right).1,6 + \frac{{ - 1}}{3}\\ =(\frac{25}{100}-\frac{5}{6}).\frac{16}{10}+\frac{-1}{3}\\= \left( {\frac{1}{4} - \frac{5}{6}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \left( {\frac{6}{{24}} - \frac{{20}}{{24}}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{24}}.\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 5}}{{15}}\\ = \frac{{ - 19}}{{15}}\end{array}\)
b)
\(\begin{array}{l}3 - 2.\left[ {0,5 + \left( {0,25 - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left[ {\frac{1}{2} + \left( {\frac{1}{4} - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left( {\frac{1}{2} + \frac{1}{{12}}} \right)\\ =3-2.(\frac{6}{12}+\frac{1}{12})\\= 3 - 2.\frac{7}{{12}}\\ = 3 - \frac{7}{6}\\=\frac{18}{6}-\frac{7}{6}\\ = \frac{{11}}{6}\end{array}\)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a)\(12^3.3^{-4}.64\)
\(=3^3.2^6.3^{-3}.2^6=2^{12}\)
b) \(\left(\frac{3}{7}\right)^5.\left(\frac{7}{3}\right)^{-1}.\left(\frac{5}{3}\right)^6:\left(\frac{343}{625}\right)^2\)
\(=\frac{3^5.7^{-1}}{7^5.3^{-1}}.\left(\frac{5}{3}\right)^6:\frac{7^6}{5^8}\)
\(=\frac{3^6}{7^6.}.\frac{5^6}{3^6}.\frac{5^8}{7^6}\)
\(=\frac{5^{14}}{7^{12}}\)
\(\begin{array}{l}a)\left( {\frac{2}{3} + \frac{1}{6}} \right):\frac{5}{4} + \left( {\frac{1}{4} + \frac{3}{8}} \right):\frac{5}{2}\\ = \left( {\frac{4}{6} + \frac{1}{6}} \right).\frac{4}{5} + \left( {\frac{2}{8} + \frac{3}{8}} \right).\frac{2}{5}\\ = \frac{5}{6}.\frac{4}{5} + \frac{5}{8}.\frac{2}{5}\\ = \frac{2}{3} + \frac{1}{4}\\ = \frac{8}{{12}} + \frac{3}{{12}}\\ = \frac{{11}}{{12}}\\b)\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\\ = \frac{5}{9}:\left( {\frac{2}{{22}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{4}{{14}}} \right)\\ = \frac{5}{9}:\frac{{ - 3}}{{22}} + \frac{7}{4}.\frac{{ - 3}}{{14}}\\ = \frac{5}{9}.\frac{{ - 22}}{3} + \frac{{ - 3}}{8}\\ = \frac{{ - 110}}{{27}} + \frac{{ - 3}}{8}\\ = \frac{{ - 880}}{{216}} + \frac{{ - 81}}{{216}}\\ = \frac{{ - 961}}{{216}}\end{array}\)
\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)
\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)
\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)
\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)
\(P=\frac{37}{60}\)
\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)
\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)
\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)
\(Q=\frac{1044}{4375}\)
Ta có:
\(\begin{array}{l}{\left( {\frac{1}{9}} \right)^5} = {[{\left( {\frac{1}{3}} \right)^2}]^5} = {(\frac{1}{3})^{2.5}} = {(\frac{1}{3})^{10}};\\{\left( {\frac{1}{{27}}} \right)^7} = {[{(\frac{1}{3})^3}]^7} = {(\frac{1}{3})^{3.7}} = {(\frac{1}{3})^{21}}\end{array}\)
=(-1/3 : 1/6 )^5
=2^5
=32
\(\left(-\frac{1}{3}\right)^5:\left(\frac{1}{6}\right)^5=-\frac{5}{15}:\frac{5}{30}=2\)