Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\left(4x-\dfrac{1}{3}\right)^6=1\\ \Rightarrow\left[{}\begin{matrix}4x-\dfrac{1}{3}=1\\4x-\dfrac{1}{3}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{-1}{6}\end{matrix}\right.\)
b,
\(\left(5x-\dfrac{2}{3}\right)^2=0\\ \Rightarrow5x-\dfrac{2}{3}=0\\ 5x=\dfrac{2}{3}\\ x=\dfrac{2}{15}\)
c,
\(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\\ \Rightarrow\dfrac{1}{3}x-\dfrac{1}{2}=-2\\ \dfrac{1}{3}x=\dfrac{-3}{2}\\ x=\dfrac{-9}{2}\)
d,
\(\dfrac{81}{3^n}=3\\ \Leftrightarrow3^4:3^n=3^1\\\Leftrightarrow3^{4-n}=3^1 \\ \Rightarrow n=3\)
e,
\(\dfrac{\left(-2\right)^x}{64}=-2\\ \Leftrightarrow\left(-2\right)^x:\left(-2\right)^6=\left(-2\right)^1\\ \Leftrightarrow\left(-2\right)^{x-6}=\left(-2\right)^1\\ \Rightarrow x=7\)
f,
\(\left(-20\right)^n:10^n=16\\ \left[\left(-20\right):10\right]^n=16\\ \left(-2\right)^n=\left(-2\right)^4\\ \Rightarrow n=4\)
Bài 1:
a) \(\left(4x-\dfrac{1}{3}\right)^6=1\)
\(\Rightarrow4x-\dfrac{1}{3}=1\)
\(4x=1+\dfrac{1}{3}\)
\(4x=\dfrac{4}{3}\)
\(x=\dfrac{4}{3}:4\)
\(x=\dfrac{1}{3}\)
b) \(\left(5x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow5x-\dfrac{2}{3}=0\)
\(5x=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}:5\)
\(x=\dfrac{2}{15}\)
c) \(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\)
\(\Rightarrow\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=\left(-2\right)^3\)
\(\dfrac{1}{3}x-\dfrac{1}{2}=-2\)
\(\dfrac{1}{3}x=-2+\dfrac{1}{2}\)
\(\dfrac{1}{3}x=\dfrac{-3}{2}\)
\(x=\dfrac{-3}{2}:\dfrac{1}{3}\)
\(x=\dfrac{-9}{2}\)
d) \(\dfrac{81}{3^n}=3\)
\(\Rightarrow\dfrac{3^4}{3^n}=3\)
\(\Rightarrow3^n.3=3^4\)
\(3^{n+1}=3^4\)
n + 1 = 4
n = 4 - 1
n = 3
e) \(\dfrac{\left(-2\right)^x}{64}=-2\)
\(\Rightarrow\dfrac{\left(-2\right)^x}{\left(-2\right)^6}=-2\)
\(\Rightarrow\left(-2\right)^x=\left(-2\right)^6.\left(-2\right)\)
\(\left(-2\right)^x=\left(-2\right)^7\)
x = 7
f) (-20)n : 10n = 16
(-20 : 10)n = 16
(-2)n = 16
(-2)n = (-2)4
n = 4.
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)
\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)
\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)
\(=-\dfrac{891}{100}\)
b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)
\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)
\(=\dfrac{58}{8}+\dfrac{100}{8}\)
\(=\dfrac{158}{8}=\dfrac{79}{4}\)
c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)
\(=4-1-\dfrac{2}{5}\)
\(=3-\dfrac{2}{5}\)
\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)
e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)
\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}+\dfrac{28}{15}\)
\(=\dfrac{-25}{60}+\dfrac{112}{60}\)
\(=\dfrac{87}{60}=\dfrac{29}{20}\)
f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{8}\)
\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)
g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)
\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)
\(=\left(\dfrac{1}{2}\right)^{55}\)
\(=\dfrac{1}{2^{55}}\)
h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)
\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)
\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)
\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)
\(=\dfrac{1}{800000}\)
e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)
a) \(4.\left(-\dfrac{1}{2}\right)^3-2.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)+1\)
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}+3.\left(-\dfrac{1}{2}\right)+1\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1\)
\(=-\dfrac{3}{2}\)
b) \(8.\sqrt{9}-\sqrt{64}\)
\(=8.3-8\)
\(=24-8\)
\(=16\)
c) \(\sqrt{\dfrac{9}{16}}+\dfrac{25}{46}:\dfrac{5}{23}-\dfrac{7}{4}\)
\(=\dfrac{3}{4}+\dfrac{5}{2}-\dfrac{7}{4}\)
\(=-1+\dfrac{5}{2}\)
\(=\dfrac{3}{2}\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
a: \(\dfrac{3}{4}+\dfrac{1}{4}:x=-2\dfrac{1}{2}\)
=>\(\dfrac{1}{4}:x=-\dfrac{5}{2}-\dfrac{3}{4}=-\dfrac{10}{4}-\dfrac{3}{4}=-\dfrac{13}{4}\)
=>\(x=\dfrac{-1}{4}:\dfrac{13}{4}=\dfrac{-1}{4}\cdot\dfrac{4}{13}=\dfrac{-1}{13}\)
b: \(\left(\dfrac{2}{3}\right)^{100}:x=\left(-\dfrac{2}{3}\right)^{98}\)
=>\(\left(\dfrac{2}{3}\right)^{100}:x=\left(\dfrac{2}{3}\right)^{98}\)
=>\(x=\left(\dfrac{2}{3}\right)^{100}:\left(\dfrac{2}{3}\right)^{98}=\left(\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
c: \(\dfrac{3}{2}:\left|4x-\dfrac{1}{5}\right|=\dfrac{3}{4}\)
=>\(\left|4x-\dfrac{1}{5}\right|=\dfrac{3}{2}:\dfrac{3}{4}=\dfrac{3}{2}\cdot\dfrac{4}{3}=2\)
=>\(\left[{}\begin{matrix}4x-\dfrac{1}{5}=2\\4x-\dfrac{1}{5}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{11}{5}\\4x=-\dfrac{9}{5}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{11}{20}\\x=-\dfrac{9}{20}\end{matrix}\right.\)
\(\Leftrightarrow2^{4x+2}=2^{-6}\)
=>4x+2=-6
=>4x=-8
hay x=-2