Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Yêu cầu ở câu a) là quy tròn đến hàng phần trăm còn yêu cầu ở câu b) chỉ yêu cầu quy tròn tức là ta phải quy tròn số với độ chính xác đã cho.
- Làm tròn số 8 316,4 đến hàng chục
Số làm tròn là số 1, số bên phải số 1 là số 6>5
=> Tăng thêm 1 đơn vị
=> Số quy tròn là: 8 320
Sai số tuyệt đối: \(\left| {8320 - 8316,4} \right| = 3,6\)
- Làm tròn số 9,754 đến hàng phần trăm
Số làm tròn là số 5, số bên phải số 5 là số 4<5
=> Giữ nguyên 5 và bỏ các số bên phải đi.
=> Số quy tròn là: 9,75
Sai số tuyệt đối: \(\left| {9,754 - 9,75} \right| = 0,004\)
a) Quy tròn số \(\overline a = \sqrt 3 \) đến hàng phần trăm, ta được số gần đúng là \(a = 1,73\)
Vi \(a < \overline a < 1,735\) nên \( \overline a -a < 1,735 -1,73 = 0,005\) do đó sai số tuyệt đối là
\({\Delta _a} = \left| {\overline a - a} \right| < 0,005.\)
Sai số tương đối là \({\delta _a} \le \frac{{0,005}}{{1,73}} \approx 0,3\% \)
b) Hàng của chữ số khác 0 đầu tiên bên trái của d=0,003 là hàng phần nghìn.
Quy tròn \(\overline a \) đến hàng phần nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,732\).
c) Độ chính xác đến hàng phần chục nghìn
Quy tròn \(\overline a \) đến hàng phần chục nghìn ta được số gần đúng của \(\overline a \) là \(a = 1,7321\).
Khi quy tròn số 3,141 đến hàng phần trăm ta được số 3,14 và sai số tuyệt đối của số quy tròn là\(|3,141{\rm{ }}-{\rm{ }}3,14|{\rm{ }} = {\rm{ }}0,001{\rm{ }} < 0,005\).
Do vậy, số quy tròn 3,14 là số gần đúng của 3,141 với độ chính xác 0,005.
- Cách 1:
Hàm số biểu diễn đồ thị \(y = - 0,00188{\left( {x - 251,5} \right)^2} + 118\)
\(\begin{array}{l}{\left( {x - 251,5} \right)^2} \ge 0\\ \Leftrightarrow - 0,00188{\left( {x - 251,5} \right)^2} \le 0\\ \Leftrightarrow - 0,00188{\left( {x - 251,5} \right)^2} + 118 \le 118\end{array}\)
Khi đó độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney đạt giá trị lớn nhất là \(y = 118\left( m \right)\)
- Cách 2:
Ta có phương trình thành cầu: \(y = – 0,00188(x – 251,5)^2 + 118\)
\( \Leftrightarrow y = – 0,00188x^2 + 0,94564x – 0,91423\), là hàm số bậc hai.
Vì a = – 0,00188 < 0 nên đồ thị hàm số trên có bề lõm hướng xuống dưới hay đỉnh I của đồ thị là điểm cao nhất, vậy giá trị lớn nhất cần tìm chính là tung độ của đỉnh I.
Ta có: \(b = 0,94564, c = – 0,91423\)
\( x_I = \frac{-b}{2a}= \frac{-0,94564}{2. (-0,00188)}=251,5 \Rightarrow y_I = – 0,00188(x_I – 251,5)^2 + 118 =118.\)
Vậy độ cao lớn nhất cần tìm là 118 m.
+) Quy tròn số “\( - 3,2475\)” đến hàng phần trăm ta được số: \( - 3,25\)
+) Số gần đúng có độ chính xác là: \(\Delta = \left| { - 3,25 - \left( { - 3,2475} \right)} \right| = 0,0025\)