K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\overline{abcdef}\)

c,d,e có thể lấy bộ ba (1;2;5); (1;3;4)

TH1: c,d,e lấy bộ ba (1;2;5)

a có 6 cách

b có 5 cách

f có 4 cách

c,d,e có 3!=6 cách

=>Có 6*6*5*4=36*20=720(số)

TH2: c,d,e lấy bộ ba 1;3;4

a có 6 cách

b có 5 cách

f có 4 cách

c,d,e có 3!=6 cách

=>Có 6*6*5*4=36*20=720(số)

=>Có 720+720=1440 số

SỐ cách lập là;

7*7*6*5*4*3*2*1=35280

NV
18 tháng 3 2023

TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5

Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách

TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8

Chọn chữ số còn lại có 6 cách

Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách

\(\Rightarrow3.6.4=72\) số

Tổng: \(42+72=114\) số

NV
11 tháng 3 2023

Số bất kì: \(6!-5!\) số

Xếp 0 và 5 cạnh nhau: 2 cách

Hoán vị bộ 05 với 4 chữ số còn lại: \(5!\) cách

Hoán vị bộ 05 với 4 chữ số còn lại sao cho 0 đứng đầu: \(4!\) cách

\(\Rightarrow2.5!-4!\) cách xếp sao cho 0 và 5 cạnh nhau

\(\Rightarrow6!-5!-\left(2.5!-4!\right)\) cách xếp thỏa mãn

11 tháng 3 2023

Anh chắc sẽ gắn bó với hoc24 lâu dài ạ anh, có toán khó em nhờ anh giúp. Cách của anh lại hay nữa. 

7 tháng 5 2023

NV
20 tháng 3 2023

Số chia hết cho 4 khi 2 chữ số tận cùng của nó chia hết cho 4, nên ý tưởng ở đây là chọn 2 số tận cùng trước.

Có \(\dfrac{96-04}{4}+1=24\) số có 2 chữ số chia hết cho 4 (tính cả những số bắt đầu bằng 0 như 04, 08...)

Loại ra 2 trường hợp 2 chữ số trùng nhau là \(44\) và \(88\), ta còn 22 chữ số.

Chia 22 chữ số này làm 2 loại: có chứa chữ số 0 bao gồm 6 số là 04, 08, 20, 40, 60, 80 và 16 số không chứa chữ số 0

- TH1: 2 chữ số cuối có chứa 0, chọn 3 chữ số còn lại từ 8 chữ số còn lại và hoán vị chúng có \(A_8^3\) cách \(\Rightarrow6.A_8^3\) số

- TH2: 2 chữ số cuối không chứa chữ số 0:

+ Chọn 3 chữ số còn lại 1 cách bất kì và hoán vị: \(A_8^3\) cách

+ Chọn 3 chữ số còn lại có mặt chữ số 0 và hoán vị sao cho số 0 đứng đầu: \(A_7^2\) cách

\(\Rightarrow16.\left(A_8^3-A_7^2\right)\) số

Cộng 2 trường hợp lại

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a, Số các số tự nhiên gồm 8 chữ số đôi một khác nhau được lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là: \({P_8} = 8! = 40320\)( số )

b, Số các số tự nhiên gồm 6 chữ số đôi một khác nhau được lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là: \(P_8^6 = 20160\)( số )

NV
18 tháng 3 2023

Tổng S của 5 chữ số lập từ tập trên luôn thỏa mãn 

\(0+1+2+3+4\le S\le9+8+7+6+5\)

\(\Rightarrow10\le S\le35\)

Mà S chia hết cho 9 \(\Rightarrow S=\left\{18;27\right\}\) (lưu ý rằng 2 số này cộng lại đúng bằng 45, do đó giả sử nếu ta chọn được S=18 như 1;2;3;4;8 chia hết cho 5 thì phần còn lại chính là S=27 tương ứng)

Gọi tập S=18 là A, tập S=27 là B, ta chọn tập A:

TH1: A chứa 0 mà ko chứa 9, chọn 4 chữ số còn lại tổng 18: 

- Các cặp 18; 27; 36; 45 tổng bằng 9 nên chọn 2 trong 4 cặp này có \(C_4^2=6\) cách

Hoán vị 5 chữ số tập A có \(5!-4!\) cách \(\Rightarrow6.\left(5!-4!\right)=576\) số tập A

Hoán vị 5 chữ số tập B tương ứng có \(5!\) cách \(\Rightarrow6.5!=720\) số tập B

- Các bộ 1467; 2358 tổng bằng 18, có 2 cách chọn 1 bộ

Hoán vị 5 chữ số tập A \(\Rightarrow2.\left(5!-4!\right)=192\) số

Hoán vị 5 chữ số tập B tương ứng: \(2.5!=240\) số

TH2: A chứa 9 mà ko chứa 0:

\(\Rightarrow\) Chọn 4 chữ số còn lại có tổng bằng 9, dễ dàng thấy ko có bộ nào thỏa mãn do 1+2+3+4>9

TH3: A chứa cả 0 lẫn 9:

\(\Rightarrow\) Tổng 3 chữ số còn lại bằng 9, ta có các bộ 126; 135; 234;  có 3 bộ

Hoán vị 5 chữ số của A: \(3\left(5!-4!\right)=288\) số

Hoán vị 5 chữ số tập B: \(3.5!=360\) số

TH4: A ko chứa cả 0 lẫn 9:

Có các bộ 12348; 12357; 12456 tổng 3 bộ

Hoán vị tập A: có \(3.5!=360\) số

Hoán vị tập B : \(3.\left(5!-4!\right)=288\) số

\(\Rightarrow\text{576+720+192+240+288+360+360+288=3024}\) số

18 tháng 3 2023

Anh là giáo sư toán rồi ạ, anh giỏi quá =))

26 tháng 4 2023

Cho \(X=\left\{0;1;2;4;5;6;8;9\right\}\)

Gọi số cần tìm là \(\overline{abcd}\)

Chọn \(d=1,d=5\) hay \(d=9\)\(\Rightarrow\) có 1 cách

Chọn \(a\) có \(6\) cách \(\left(a\ne0,a\ne d\right)\)

Chọn \(b\) có \(5\) cách \(\left(b\ne a,b\ne d\right)\)

Chọn \(c\) có \(4\) cách \(\left(c\ne a,c\ne b,c\ne d\right)\)

Theo Quy tắc nhân, ta có : \(1.6.5.4=120\) cách chọn 4 chữ số khác nhau và là số lẻ.