\(3\sqrt{x^2y}\)-\(4\sqrt{xy^2}\)+5xy...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

a, SBC=\(\sqrt{xy}\)(3\(\sqrt{x}\)-4\(\sqrt{y}\)+5\(\sqrt{xy}\))

câu b bn lmf tương tự nhé,mấy bài này liên quan đến phân tích đa thức bằng nhân tử đó bn:))

30 tháng 7 2018

1. c)\(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)

\(\Leftrightarrow6+7\sqrt{6}-2\sqrt{6}-14\)

\(\Leftrightarrow-8+5\sqrt{6}\)

d)\(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)

\(\Leftrightarrow3-5\sqrt{3}+2\sqrt{3}-3\)

\(\Leftrightarrow-3\sqrt{3}\)

29 tháng 7 2018

@ngonhuminh @ngonhuminh

31 tháng 7 2018

1.a) (\(\sqrt{12}\) -3\(\sqrt{75}\))\(\sqrt{3}\)

=\(\sqrt{12}\).\(\sqrt{3}\)-3\(\sqrt{75}\).\(\sqrt{3}\)

=\(2\sqrt{3}.\sqrt{3}-3.5\sqrt{3}.\sqrt{3}\)

=2.3-15.3

=6-45

= -39

b)\(\left(\sqrt{18}-4\sqrt{72}\right)2\sqrt{2}\)

\(\left(3\sqrt{2}-4.6\sqrt{2}\right).2\sqrt{2}\)

\(\left(3\sqrt{2}-24\sqrt{2}\right).2\sqrt{2}\)

\(3\sqrt{2}.2\sqrt{2}-24\sqrt{2}.2\sqrt{2}\)

= 6.2-48.2 = 12-96= -84

d)\(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)

\(3-5\sqrt{3}+2\sqrt{3}-10\)

\(-7-3\sqrt{3}\)

30 tháng 7 2018

\(\)c)\(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)

\(\Leftrightarrow6+6\sqrt{7}-2\sqrt{6}-14\)

\(\Leftrightarrow-8+5\sqrt{6}\)

d)\(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)

\(\Leftrightarrow3-5\sqrt{3}+2\sqrt{3}-3\)

\(\Leftrightarrow-3\sqrt{3}\)

25 tháng 6 2019

3. :))

4. \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)

\(=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=\sqrt{x}\left(x-y\right)+\sqrt{y}\left(x-y\right)\)

\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

5. \(\sqrt{a^3b}+\sqrt{ab^3}+\sqrt{\left(a+b\right)^2}\)

\(=a\sqrt{ab}+b\sqrt{ab}+\sqrt{a+b}\cdot\sqrt{a+b}\)

\(=\sqrt{ab}\cdot\left(a+b\right)+\sqrt{a+b}\cdot\sqrt{a+b}\)

\(=\sqrt{ab}\cdot\sqrt{\left(a+b\right)^2}+\sqrt{\left(a+b\right)^2}\)

\(=\left|a+b\right|\left(\sqrt{ab}+1\right)\)

25 tháng 6 2019

1. \(a-3\sqrt{a}+2=a-\sqrt{a}-2\sqrt{a}+2=\sqrt{a}\left(\sqrt{a}-1\right)-2\left(\sqrt{a}-1\right)\)

\(=\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)

2. \(a+4\sqrt{a}+3=a+3\sqrt{a}+\sqrt{a}+3=\sqrt{a}\left(\sqrt{a}+3\right)+\left(\sqrt{a}+3\right)\)

\(=\left(\sqrt{a}+3\right)\left(\sqrt{a}+1\right)\)

22 tháng 6 2019

\(ab+b\sqrt{a}+\sqrt{a}+1\)

(đk: \(a\ge0\))

\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

22 tháng 6 2019

ĐK: \(x,y\ge0\)

\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)

30 tháng 6 2021

a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\sqrt{a}-\sqrt{b}\) (vì a > b > 0)

b) \(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}.\sqrt{x-3}}{\sqrt{\left(\sqrt{x}+\sqrt{3}\right)\left(\sqrt{x}-\sqrt{3}\right)}}=\frac{\sqrt{3\left(x-3\right)}}{\sqrt{x-3}}=\sqrt{3}\)

c) \(2y^2\sqrt{\frac{x^4}{4y^2}}=2y^2\cdot\frac{x^2}{-2y}=-x^2y\) (vì y < 0)

d) \(\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)(vì x > 0)

e) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\) (Vì x < 0, y > 0)

29 tháng 6 2018

(a) \(ab+b\sqrt{a}+\sqrt{a}+1\\ =b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\\ =\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\\ =\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\\ =\left(\sqrt{x}-\sqrt{y}\right)\left(x+2\sqrt{xy}+y\right)\\ =\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\\ =\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

29 tháng 6 2018

a,\(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

b,\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(x+2\sqrt{xy}+y\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)

1 tháng 7 2019

\(a,\left(\sqrt{3}-\sqrt{2}\right)^2\)

= \(\sqrt{3^2}-2.\sqrt{3}.\sqrt{2}+\sqrt{2^2}\)

= \(3-2\sqrt{6}+2\)

= \(5-2\sqrt{6}\)

1 tháng 7 2019
https://i.imgur.com/pGaPuL7.png

\(A,ĐKXĐ:x;y\ge0\)

\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)

\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)

\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)

\(ĐKXĐ:x;y\ge0\)

\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)

\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)