K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Công thức nghiệm phương trình bậc 2 :

\(ax^2+bx+c=0\)

\(\Delta=b^2-4.a.c\)

Nếu \(x>0\), Phương trình có 2 nghiệm phân biệt

\(X_1=\frac{b+\sqrt{\Delta}}{2a}\) \(X_2=\frac{b-\sqrt{\Delta}}{2a}\)

Nếu \(x< 0,\) Phương trình vô nghiệm

Nếu \(x=0\), Phương trình có nghiệm kép \(X_1=X_2=\frac{-b}{2a}\)

 

20 tháng 10 2016

Phương trình bậc 2 có dạng tổng quát

ax^{2}+bx+c=0

Trong đó a ≠ 0 , a , b là hệ số, c là hằng số

Để giải phương trình bậc 2, tưc là tìm nghiệm x, ta cần tính delta ( KH: \Delta )

\Delta = b^{2}-4ac

- Nếu \Delta 0 thì phương trình có 2 nghiệm phân biệt

x_{1}=\frac{-b-\sqrt{\Delta }}{2a} x_{2}=\frac{-b+\sqrt{\Delta }}{2a}

- Nếu \Delta =0 thì phương trình có 1 nghiệm

x=\frac{-b}{2a}

- Nếu \Delta 0 thì phương trình vô nghiệm

* Công thức thu gọn (Áp dụng nếu b là số chẵn)

Ta cần tính

b'=\frac{b}{2}

Sau đó lập delta

\Delta = (b')^{2}-ac

Xét delta như trường hợp tổng quát

Công thức nghiệm:

x_{1}=\frac{-b-\sqrt{\Delta }}{a} x_{2}=\frac{-b+\sqrt{\Delta }}{a}

 

* Chú ý : Trong một số trường hợp, các phương trình bậc cao hơn cũng có thể quy về một phương trình bậc hai, nhờ cách đặt ẩn phụ, ví dụ:

Phương trình trùng phương

ax^{4}+bx^{2}+c=0

Đặt z = x^{2} ta được phương trình

az^{2}+bz+c=0

Sau đó giải phương trình bậc hai, và suy ra nghiệm x.

a: Thay m=1 vào pt, ta được:

\(x^2-x-2=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16\)

\(=\left(m-4\right)^2\)

Để phươg trình có hai nghiệm phân biệt thì m-4<>0

hay m<>4

Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(-m\right)^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

Câu 2, Giải bài toán sau bằng cách lập hệ phương trinh: Một mảnh vườn hình chữ nhật có chu vi 44 m, nếu tăng chiều dài thêm 3m và tăng chiêu rộng thêm 2m thì diện tích hinh chữ nhật tăng thêm 55m². Tính chiều dài và chiêu rộng của månh vườn.Câu 2, Giải bải toán sau bằng cách lập hệ phương trình: Trong phòng học có một số ghế dài. Nếu xếp mỗi ghế 3 học sinh thì thừa ra 4 học sinh không có...
Đọc tiếp

Câu 2, Giải bài toán sau bằng cách lập hệ phương trinh: Một mảnh vườn hình chữ nhật có chu vi 44 m, nếu tăng chiều dài thêm 3m và tăng chiêu rộng thêm 2m thì diện tích hinh chữ nhật tăng thêm 55m². Tính chiều dài và chiêu rộng của månh vườn.

Câu 2, Giải bải toán sau bằng cách lập hệ phương trình: Trong phòng học có một số ghế dài. Nếu xếp mỗi ghế 3 học sinh thì thừa ra 4 học sinh không có chỗ. Nếu xếp mỗi ghế 4 học sinh thì thừa ra 2 ghế. Hỏi trong phòng học có bao nhiêu ghế, bao nhiêu học sinh.

Câu 2: Giải bài toán sau bằng cách lập hệ phương trình: Hai người cùng låm một công việc trong 7 giờ 12 phút thi xong. Nếu người thứ nhất 2 làm trong 6 giờ; người thứ 2 làm trong 3 giờ thì cả hai người làm được - công việc. Hỏi nếu mỗi người làm một minh thi trong bao lâu sẽ xong.

Giai từng bước giúp ạ

2
24 tháng 3 2020

bn ơi sao nhiều câu 2 thế?

 Giải câu 1 : mảnh vườn..

gọi chiều dài mảnh vườn là x m(x>0)

gọi chiều rộng mảnh vườn là y m(y>0)

chu vi mảnh vườn hình chữ nhật đó là : ( x+y).2 =44 \(\Rightarrow\)x+y = 22 \(\Rightarrow\)x=22-y          

Theo đề bài ta có : Diện tích mảnh vườn HCN là : (x+3)(x+2)=xy +55                  (1)

 Giải phương trình (1) : \(xy+2x+3y+6=xy+55\)

                                \(\Leftrightarrow2x+3y=49\)   

Thay x=22-y vào phương trình trên ta có:

      \(2\left(22-y\right)+3y=49\)

\(\Leftrightarrow44-2y+3y=49\)

\(\Leftrightarrow y=5\)\(\Rightarrow\)X=17

Vậy chiều dài mảnh vườn là 17 m, chiều rộng mảnh vườn là 5 m

24 tháng 3 2020

Giải câu 2 :phòng học...

Gọi số ghế trong lớp học là x ghế ( x>0)

Gọi số học sinh trong lớp học là y học sinh ( y>0)

Do xếp mỗi ghế 3 hs thì thừa 4 hs k có chỗ nên ta có phương trình (1) :  3x+4=y

Do xếp mỗi ghế 4 học sinh thì thừa ra 2 ghế. nên ta có phương trình (2) : 4(x-2) =y

Từ 2 phương trình trên ta có : 3x+4 = 4(x-2) =y

\(\Leftrightarrow3x+4=4x-8\)

\(\Leftrightarrow3x-4x=-8-4\)

\(\Leftrightarrow-x=-12\)

\(\Leftrightarrow x=12\)  \(\Leftrightarrow y=3.12+4=40\)

Vậy trong phòng học có 12 ghế và 40 học sinh

7 tháng 4 2016

GỒM 4 BƯỚC:

B1:Lập hệ pt

+chọn ẩn(đơn vị,đk)

+biểu diễn đại lượng chưa biết theo đại lượng đã bít

+thiết lập mối qh giửa các đl trong bài để có pt hay hệ pt

B2;giải

B3:kl

28 tháng 5 2016

trong sách giáo khoa lớp 8 có đấy

8 tháng 6 2016

Bạn search Google: "Cách nhẩm nghiệm phương trình bậc cao" xem!

Như bài này mình nhẩm được nghiệm m = 1 nên chắc chắn đa thức vế trái sẽ chia hết cho (m-1).

Giảm được 1 bậc là về phương trình bậc 2. Hoặc nhẩm nghiệm tiếp hoặc có bác Delta rồi!

GL!

9 tháng 6 2016

Với phương trình bậc ba, ta có thể nhẩm nghiệm để tách nhân tử chung, nhằm giảm bậc của phương trình. Chú ý nếu phương trình có nghiệm nguyên thì nghiệm đó sẽ là ước của hệ số tự do. Thực ra nếu ko nhẩm đc ta có thể nhờ máy tính :)

Giả sử như bài trên, ta thấy tổng các hệ số bằng 0 nên có nghiệm x = 1. Vậy thì ta sẽ cố gắng tách VT để xuất hiện nhân tử chung là (x - 1).

Sau đó nhân tử còn lại là bậc hai, ta đã biết cách giải.

Các phương trình bậc ca khác cũng tương tự, ta tìm cách tách để giảm bậc của các phương trình cần giải.

17 tháng 12 2021

a: Thay m=2 vào pt, ta được:

\(x^2-4x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{matrix}\right.\)

4 tháng 3 2018

x^2 + x - 2 = 0

<=> ( x^2 - x ) + ( 2x - 2 ) = 0

<=> x . ( x - 1 ) + 2 . ( x - 1 ) = 0

<=> ( x - 1 ) . ( x + 2 ) = 0

<=> x - 1 = 0 hoặc x + 2 = 0

<=> x = 1 hoặc x = -2

Vậy .......

Tk mk nha

4 tháng 3 2018

ko bít

8 tháng 3 2018

Gọi số thứ nhất là x

\(\Rightarrow\)Số thứ hai là 19-x

Theo đề bài ta có phương trình:

x2+(19-x)2=185

\(\Leftrightarrow x^2+361-38x+x^2=185\)

\(\Leftrightarrow2x^2-38x+361-185=0\)

\(\Leftrightarrow2x^2-38x+176=0\)

\(\Leftrightarrow x^2-19x+88=0\)

\(\Leftrightarrow x^2-11x-8x+88=0\)

\(\Leftrightarrow x\left(x-11\right)-8\left(x-11\right)=0\)

\(\Leftrightarrow\left(x-11\right)\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-11=0\\x-8=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=11\\x=8\end{cases}}\)

Vậy số thứ nhất là 8, số thứ hai là 19-8=11 hoặc số thứ nhất là 11, số thứ hai là 19-11=8