Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay m=1 vào pt, ta được:
\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)
\(=m^2-8m+16\)
\(=\left(m-4\right)^2\)
Để phươg trình có hai nghiệm phân biệt thì m-4<>0
hay m<>4
Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(-m\right)^2-2\left(2m-4\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi m=2
bn ơi sao nhiều câu 2 thế?
Giải câu 1 : mảnh vườn..
gọi chiều dài mảnh vườn là x m(x>0)
gọi chiều rộng mảnh vườn là y m(y>0)
chu vi mảnh vườn hình chữ nhật đó là : ( x+y).2 =44 \(\Rightarrow\)x+y = 22 \(\Rightarrow\)x=22-y
Theo đề bài ta có : Diện tích mảnh vườn HCN là : (x+3)(x+2)=xy +55 (1)
Giải phương trình (1) : \(xy+2x+3y+6=xy+55\)
\(\Leftrightarrow2x+3y=49\)
Thay x=22-y vào phương trình trên ta có:
\(2\left(22-y\right)+3y=49\)
\(\Leftrightarrow44-2y+3y=49\)
\(\Leftrightarrow y=5\)\(\Rightarrow\)X=17
Vậy chiều dài mảnh vườn là 17 m, chiều rộng mảnh vườn là 5 m
Giải câu 2 :phòng học...
Gọi số ghế trong lớp học là x ghế ( x>0)
Gọi số học sinh trong lớp học là y học sinh ( y>0)
Do xếp mỗi ghế 3 hs thì thừa 4 hs k có chỗ nên ta có phương trình (1) : 3x+4=y
Do xếp mỗi ghế 4 học sinh thì thừa ra 2 ghế. nên ta có phương trình (2) : 4(x-2) =y
Từ 2 phương trình trên ta có : 3x+4 = 4(x-2) =y
\(\Leftrightarrow3x+4=4x-8\)
\(\Leftrightarrow3x-4x=-8-4\)
\(\Leftrightarrow-x=-12\)
\(\Leftrightarrow x=12\) \(\Leftrightarrow y=3.12+4=40\)
Vậy trong phòng học có 12 ghế và 40 học sinh
GỒM 4 BƯỚC:
B1:Lập hệ pt
+chọn ẩn(đơn vị,đk)
+biểu diễn đại lượng chưa biết theo đại lượng đã bít
+thiết lập mối qh giửa các đl trong bài để có pt hay hệ pt
B2;giải
B3:kl
Bạn search Google: "Cách nhẩm nghiệm phương trình bậc cao" xem!
Như bài này mình nhẩm được nghiệm m = 1 nên chắc chắn đa thức vế trái sẽ chia hết cho (m-1).
Giảm được 1 bậc là về phương trình bậc 2. Hoặc nhẩm nghiệm tiếp hoặc có bác Delta rồi!
GL!
Với phương trình bậc ba, ta có thể nhẩm nghiệm để tách nhân tử chung, nhằm giảm bậc của phương trình. Chú ý nếu phương trình có nghiệm nguyên thì nghiệm đó sẽ là ước của hệ số tự do. Thực ra nếu ko nhẩm đc ta có thể nhờ máy tính :)
Giả sử như bài trên, ta thấy tổng các hệ số bằng 0 nên có nghiệm x = 1. Vậy thì ta sẽ cố gắng tách VT để xuất hiện nhân tử chung là (x - 1).
Sau đó nhân tử còn lại là bậc hai, ta đã biết cách giải.
Các phương trình bậc ca khác cũng tương tự, ta tìm cách tách để giảm bậc của các phương trình cần giải.
a: Thay m=2 vào pt, ta được:
\(x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{matrix}\right.\)
x^2 + x - 2 = 0
<=> ( x^2 - x ) + ( 2x - 2 ) = 0
<=> x . ( x - 1 ) + 2 . ( x - 1 ) = 0
<=> ( x - 1 ) . ( x + 2 ) = 0
<=> x - 1 = 0 hoặc x + 2 = 0
<=> x = 1 hoặc x = -2
Vậy .......
Tk mk nha
Gọi số thứ nhất là x
\(\Rightarrow\)Số thứ hai là 19-x
Theo đề bài ta có phương trình:
x2+(19-x)2=185
\(\Leftrightarrow x^2+361-38x+x^2=185\)
\(\Leftrightarrow2x^2-38x+361-185=0\)
\(\Leftrightarrow2x^2-38x+176=0\)
\(\Leftrightarrow x^2-19x+88=0\)
\(\Leftrightarrow x^2-11x-8x+88=0\)
\(\Leftrightarrow x\left(x-11\right)-8\left(x-11\right)=0\)
\(\Leftrightarrow\left(x-11\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-11=0\\x-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=11\\x=8\end{cases}}\)
Vậy số thứ nhất là 8, số thứ hai là 19-8=11 hoặc số thứ nhất là 11, số thứ hai là 19-11=8
Công thức nghiệm phương trình bậc 2 :
\(ax^2+bx+c=0\)
\(\Delta=b^2-4.a.c\)
Nếu \(x>0\), Phương trình có 2 nghiệm phân biệt
\(X_1=\frac{b+\sqrt{\Delta}}{2a}\) \(X_2=\frac{b-\sqrt{\Delta}}{2a}\)
Nếu \(x< 0,\) Phương trình vô nghiệm
Nếu \(x=0\), Phương trình có nghiệm kép \(X_1=X_2=\frac{-b}{2a}\)
Phương trình bậc 2 có dạng tổng quát
Trong đó a ≠ 0 , a , b là hệ số, c là hằng số
Để giải phương trình bậc 2, tưc là tìm nghiệm x, ta cần tính delta ( KH: )
- Nếu thì phương trình có 2 nghiệm phân biệt
- Nếu thì phương trình có 1 nghiệm
- Nếu thì phương trình vô nghiệm
* Công thức thu gọn (Áp dụng nếu b là số chẵn)
Ta cần tính
Sau đó lập delta
Xét delta như trường hợp tổng quát
Công thức nghiệm:
* Chú ý : Trong một số trường hợp, các phương trình bậc cao hơn cũng có thể quy về một phương trình bậc hai, nhờ cách đặt ẩn phụ, ví dụ:
Phương trình trùng phương
Đặt ta được phương trình
Sau đó giải phương trình bậc hai, và suy ra nghiệm x.