Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+x+y=4\\ x\left(y+1\right)+y+1=4+1=5\\ \left(x+1\right)\left(y+1\right)=5\)
\(x+1\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(y+1\) | \(1\) | \(5\) | \(-5\) | \(-1\) |
\(x\) | \(4\) | \(0\) | \(-2\) | \(-6\) |
\(y\) | \(0\) | \(4\) | \(-6\) | \(-2\) |
2/
a/
\(\dfrac{4n+2}{n+1}=\dfrac{4n+4-2}{n+1}=\dfrac{4\left(n+1\right)-2}{n+1}=4-\dfrac{2}{n+1}\)
\(\Rightarrow4n+2⋮n+1\) Khi \(n+1=\left\{-2;-1;1;2\right\}\Rightarrow n=\left\{-3;-2;0;1\right\}\)
b/
\(\Rightarrow a+2=\dfrac{8}{b-1}\left(b\ne1\right)\) (1)
a nguyên => a+2 nguyên \(\Rightarrow8⋮\left(b-1\right)\)
\(\Rightarrow b-1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow b=\left\{-7;-3;-1;0;2;3;5;9\right\}\) Thay các giá trị của b vào (1) để tìm a
3/
Gọi số tiền mẹ cho Chi là A \(\Rightarrow100000\le A\le200000\)
Nếu bớt số tiền mẹ cho Chi đi 5000 đồng thì
\(A-5000⋮15000;A-5000⋮8000\)
\(\Rightarrow A-5000=UC\left(8000;15000\right)\) Và \(95000\le A-5000\le195000\)
\(\Rightarrow A-5000=120000\Rightarrow A=125000\)
#)Giải :
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=1+3^2+3^4+...+3^{100}\)
\(3^2B=3^2+3^4+3^6+...+3^{102}\)
\(3^2B-B=\left(3^2+3^4+3^6+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(8B=3^{102}-1\)
\(B=\frac{3^{102}-1}{8}\)
\(C=1+5^3+5^6+...+5^{99}\)
\(5^2C=5^3+5^6+5^9+...+5^{102}\)
\(5^2C-C=\left(5^3+5^6+5^9...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
\(24C=5^{102}-1\)
\(C=\frac{5^{102}-1}{24}\)
a) A = 1 + 22 + ... + 2100
=> 2A = 22 + 23 + ... + 2101
Lấy 2A - A = (2 + 22 + ... + 2101) - (1 + 22 + ... 2100)
A = 2101 - 1
b) B = 1 + 32 + 34 + ... + 3100
=> 32B = 32 + 34 + 36 + ..... + 3102
=> 9B = 32 + 34 + 36 + ..... + 3102
Lấy 9B - B = ( 32 + 34 + 36 + ..... + 3102) - (1 + 32 + 34 + ... + 3100)
8B = 3102 - 1
B = \(\frac{3^{102}-1}{8}\)
c) C = 1 + 53 + 56 + ... + 599
=> 53.C = 53 . 56 . 59 + ... + 5102
=> 125.C = 53 . 56 . 59 + ... + 5102
Lấy 125.C - C = (53 . 56 . 59 + ... + 5102) - (1 + 53 + 56 + ... + 599)
124.C = 5102 - 1
=> C = \(\frac{5^{102}-1}{124}\)
\(a.\dfrac{7}{8}+\dfrac{1}{2}\text{=}\dfrac{11}{8}\)
\(b.\dfrac{5}{6}+\left(-2\right)\text{=}\dfrac{-7}{6}\)
\(c.\dfrac{2}{5}+\dfrac{-3}{8}\text{=}\dfrac{1}{40}\)
\(d.\dfrac{5}{7}-\dfrac{3}{8}\text{=}\dfrac{19}{56}\)
\(e.\dfrac{3}{4}-\dfrac{1}{2}+\dfrac{7}{6}\text{=}\dfrac{17}{12}\)
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.