Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11 c)
\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)
12 a) Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)
áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm )
b) áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)
Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)
đk: \(\left\{{}\begin{matrix}x\ge-1\\y\ge-2\end{matrix}\right.\)
TheoBĐT Bunhiacopxki ,ta có: \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\)
\(\Rightarrow\left(x+y\right)^2-9\left(\sqrt{x+1}+\sqrt{y+2}\right)^2\le9.2\left(x+y+3\right)\)
\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)-54\le0\)
\(\Rightarrow x+y\le9+3\sqrt{15}\Rightarrow P\le9+3\sqrt{15}\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+y=9+3\sqrt{15}\\\sqrt{x+1}=\sqrt{y+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+3\sqrt{15}}{2}\\y=\dfrac{8+3\sqrt{15}}{2}\end{matrix}\right.\)
Vậy Max P = \(9+3\sqrt{15}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+3\sqrt{15}}{2}\\y=\dfrac{8+3\sqrt{15}}{2}\end{matrix}\right.\)
===> Chọn D
\(ĐK:x\ge5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{x-5}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow4b^2-3a^2=x-20\)
\(PT\Leftrightarrow4b^2-3a^2+a+b+ab=0\\ \Leftrightarrow4ab+4b^2-3a^2-3ab+a+b=0\\ \Leftrightarrow4b\left(a+b\right)-3a\left(a+b\right)+\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(4b-3a+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b=0\left(\text{loại do }a+b>0\right)\\4b-3a+1=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow4\sqrt{x-5}=3\sqrt{x}-1\\ \Leftrightarrow16x-80=9x-6\sqrt{x}+1\\ \Leftrightarrow7x+6\sqrt{x}-81=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=-\dfrac{27}{7}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=9\left(nhận\right)\)