K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

Bạn giải được mà,sao còn đăng

bài 1 : cho A = {n| \(\sqrt{n+1}\) là số tự nhiên, 2 < \(\sqrt{n+1} 6\)} khoanh vào khẳng định đúng  - khẳng định 1 : có 3 phần tử của A là bội của 5 - khẳng định 2 : có 3 phần tử của A là bội của 3 - khẳng định 3 : có 2 phần tử của A là bội của 3 - khẳng định 4 : có 2 phần tử của A là bội của 5 bài 2 : kí hiệu \(\left[x\right]\) là số nguyên lớn nhất không vượt quá \(x\) cho \(x\) là số thực thỏa...
Đọc tiếp

bài 1 : cho A = {n| \(\sqrt{n+1}\) là số tự nhiên, 2 < \(\sqrt{n+1}< 6\)}

khoanh vào khẳng định đúng 

- khẳng định 1 : có 3 phần tử của A là bội của 5

- khẳng định 2 : có 3 phần tử của A là bội của 3

- khẳng định 3 : có 2 phần tử của A là bội của 3

- khẳng định 4 : có 2 phần tử của A là bội của 5

bài 2 : kí hiệu \(\left[x\right]\) là số nguyên lớn nhất không vượt quá \(x\)

cho \(x\) là số thực thỏa mãn \(\left[x\right]\div2=3\div6\), khoanh vào khẳng định đúng

- khẳng định 1 : (x - 1) × (x - 3) ≥ 0

- khẳng định 2 : (x - 1) × (x - 3) > 0

- khẳng định 3 : (x - 1) × (x - 3) ≤ 0

- khẳng định 4 : (x - 1) × (x - 3) < 0

bài 3 : cho tam giác ABC có \(\widehat{A}=62^o,\widehat{B}=52^o,AD\) là tia phân giác góc A, D thuộc BC. Tính số đo của góc ADC

bài 4 : cho 2 số \(x,y\) thỏa mãn \(x\div15=y\div6\) và \(xy=10\), khoanh vào khẳng định đúng

- khẳng định 1 : y2 < 30 < x2

- khẳng định 2 : x2 < y2 < 30

- khẳng định 3 : y2 < x2 < 30

- khẳng định 4 : x2 < 30 < y2

bài 5 : cho tam giác ABC, số đo góc A là 44o. Kẻ Bx, Cy lần lượt là tia đối của tia BA, CA. Tia phân giác của các góc xBC và BCy cắt nhau tại H. Tính số đo của góc BHC

bài 6 : cho tam giác ABC có \(\widehat{A}=60^o,\widehat{B}=40^o,D\) là điểm nằm trên cạnh BC sao cho \(\widehat{DAC}=2\times\widehat{BAD}\). Tia phân giác góc B cắt AD tại M. Tính số đo góc AMB

bài 7 : căn bậc ba số thực \(a\) là số thực \(x\) sao cho x3 = a. Kí hiệu \(x=\sqrt[3]{a}\). Gia trị của \(x\) thỏa mãn \(\sqrt[3]{27x+27}+\sqrt[3]{8x+8}=5\) là :

bài 8 : cho \(x,y\) là các số thực khác 0 thỏa mãn \(x\div2=y\div7.\) Khoanh vào đẳng thức đúng nhất

- đẳng thức 1 : \(\left(x-y\right)\div\left(x+y\right)=5\div\left(-9\right)\)

- đẳng thức 2 : \(\left(x-y\right)\div\left(x+y\right)=5\div9\)

- đẳng thức 3 : \(\left(x-y\right)\div\left(x+y\right)=\left(-9\right)\div5\)

- đẳng thức 4 : \(\left(x-y\right)\div\left(x+y\right)=9\div5\)

0
30 tháng 6 2019

\(\frac{-3}{7}\).\(^{\left(-3\right)^2}\)-\(\sqrt{\frac{4}{49}}\)

\(\frac{-3}{7}.9-\sqrt{\frac{4}{49}}\)

=\(\frac{-27}{7}-\sqrt{\frac{4}{49}}\)

=\(\frac{-27}{7}-\frac{2}{7}\)

=\(\frac{-29}{7}\)

Chúc bạn học tốt

30 tháng 6 2019

\(\left|-\frac{3}{7}\right|\cdot(-3)^2-\sqrt{\frac{4}{49}}\)

\(=\frac{3}{7}\cdot9-\frac{2}{7}\)

\(=\frac{27}{7}-\frac{2}{7}=\frac{25}{7}\)

3 tháng 10 2023

Bài 1: 

a) \(6,125\approx6,13\)

b) \(21,333\approx21,33\)

c) \(5,666\approx5,67\)

d) \(5,346\approx5,35\)

e) \(2,\left(321\right)=2,321321...\approx2,32\)

f) \(-4,63\left(3\right)=-4.6333...\approx-4,63\)

g) \(\dfrac{3}{7}=0,\left(428571\right)\approx0,43\)

Bài 2:

a) \(\sqrt{2}\approx1,414\)

b) \(\sqrt{2}\approx1,41\)

c) \(\sqrt{2}\approx1,4\)

3 tháng 10 2023

Bài 1 :

a) \(6,125\sim6,1\)

b) \(21,333\sim21,3\)

c) \(5,666\sim5,7\)

d) \(5,346\sim5,3\)

e) \(2,\left(312\right)\sim2,3\)

f) \(-4,63\left(3\right)=-4,6\)

g) \(\dfrac{3}{7}\sim0,429\sim0,4\)

2 tháng 10 2017

Ta có: \(\sqrt[k+1]{\dfrac{k+1}{k}}>1\) với \(k=1,2,...,n\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt[k+1]{\dfrac{k+1}{k}}=\sqrt[k+1]{\dfrac{1.1...1}{k}\cdot\dfrac{k+1}{k}}\)

\(< \dfrac{1+1+1+...+1+\dfrac{k+1}{k}}{k+1}=\dfrac{k}{k+1}+\dfrac{1}{k}=1+\dfrac{1}{k\left(k+1\right)}\)

Suy ra \(1< \sqrt[k+1]{\dfrac{k+1}{k}}< 1+\left(\dfrac{1}{k}-\dfrac{1}{k+1}\right)\)

Lần lượt cho \(k=1,2,3,...,n\) rồi cộng lại được:

\(n< \sqrt{2}+\sqrt[3]{\dfrac{3}{2}}+...+\sqrt[n+1]{\dfrac{n+1}{n}}< n+1-\dfrac{1}{n}< n+1\)

Vậy phần nguyên a là n

2 tháng 10 2017

Ace Legona

hoc24 toàn siêu nhân

lớp gì cũng biết AM-GM

giả / sử không có AM-GM ? toán học đi về đâu?

kể cũng lạ

đã là siêu nhân rồi sao lại phải hỏi nhỉ

25 tháng 10 2017

} \leq \sqrt{27}.\frac{(\frac{x}{3}+\frac{x}{3}+\dfrac{x}{3}+2r-x)^{2}}{16}= = \sqrt{27}.\frac{r^2}{4}$  chinh latex

AH
Akai Haruma
Giáo viên
6 tháng 7

Đề sai. Cho $n=2$ thì $\sqrt{1}+\sqrt{2}> \sqrt{\frac{3}{2}}$