Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{O}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB
Bài 1:
a, Dấu hiệu: Số diểm đạt được sau mỗi lần bắn.
b, - Bảng tần số:
gt(x) | 5 | 6 | 7 | 8 | 9 | 10 | |
ts(n) | 1 | 2 | 5 | 6 | 10 | 7 | N=30 |
- TBC=8,66(6).
- Mo=9.
Bài 2:
a, - M=(-a.x2.y3)3.(√3/5.b.x.y2)2
=-a.x6.y9.√3/5.b.x2.y4
=(-a.√3/5.b).(x6.x2).(y9.y4)
-a.√3/5.b.x8.y13
- Hệ số: -a.√3/5.b
- Bậc: 21.
Ta có : \(\Delta AHC\) có \(\widehat{H}=90^o\) nên \(\widehat{ACH}+\widehat{A_3}=90^o\) (1)
Ta lại có :
\(\widehat{BAH}+\widehat{A_3}=\widehat{BAC}=90^o\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{ACH}=\widehat{BAH}\)
Ta có :
\(\widehat{C_1}=\frac{1}{2}\widehat{ACH}\)nên \(\widehat{C}_1=\widehat{A_1}\)
Do đó \(\widehat{A_2}+\widehat{A_3}+\widehat{C}_1=\widehat{A}_2+\widehat{A}_3+\widehat{A}_1=90^o\)
Tam giác AKC có : \(\widehat{A}_2+\widehat{A_3}+\widehat{C}_1=90^o\) . Vậy \(AK\perp CK\)
Chúc bạn học tốt !!!
a: Xét ΔBAD và ΔBID co
BA=BI
góc ABD=góc IBD
BD chung
=>ΔBAD=ΔBID
b: ΔBAD=ΔBID
=>góc BID=90 độ
=>DI vuông góc BC
c: Xét ΔBIK vuông tại I và ΔBAC vuông tại A có
BI=BA
góc KBI chung
=>ΔBIK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
6:
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
mà 8<9
nên \(2^{225}< 3^{150}\)
4: \(\left|5x+3\right|>=0\forall x\)
=>\(-\left|5x+3\right|< =0\forall x\)
=>\(-\left|5x+3\right|+5< =5\forall x\)
Dấu = xảy ra khi 5x+3=0
=>x=-3/5
1:
\(\left(2x+1\right)^4>=0\)
=>\(\left(2x+1\right)^4+2>=2\)
=>\(M=\dfrac{3}{\left(2x+1\right)^4+2}< =\dfrac{3}{2}\)
Dấu = xảy ra khi 2x+1=0
=>x=-1/2
\(\dfrac{x}{-3}=\dfrac{y}{7}\Rightarrow\dfrac{x}{6}=\dfrac{y}{-14};\dfrac{y}{-2}=\dfrac{z}{5}\Rightarrow\dfrac{y}{-14}=\dfrac{z}{35}\\ \Rightarrow\dfrac{x}{6}=\dfrac{y}{-14}=\dfrac{z}{35}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{6}=\dfrac{y}{-14}=\dfrac{z}{35}=\dfrac{2x}{12}=\dfrac{4y}{-56}=\dfrac{5z}{175}=\dfrac{-2x-4y+5z}{-12+56+175}=\dfrac{146}{219}=\dfrac{2}{3}\\ \Rightarrow\left\{{}\begin{matrix}x=6\cdot\dfrac{2}{3}=4\\y=-14\cdot\dfrac{2}{3}=-\dfrac{28}{3}\\z=35\cdot\dfrac{2}{3}=\dfrac{70}{3}\end{matrix}\right.\)
x/-3=y/7;y/-2=z/5 và -2x-4y+5z=146
BCNN(7,2)=14
=>x/-3=y/7;y/-2=z/5
=>x/-3=y/7=>x/6=y/14(1)
=>y/-2=z/5=>y/-14=z/35(2)
từ(1) và (2) =>x/6=y/-14=z/35 và -2x-4y+5z=146
Sử dụng tính chất dãy tỉ số bằng nhau:
=>x/6=y/-14=z/35=>-2x-4y+5z/(-2).6-4.(-14)+5.35=146/219=2/3
=>x/6=2/3=>x=2.6/3=4
=>y/-14=2/3=>y=-14.2/3=-28/3
=>z/35=2/3=>z=35.2/3=70/3
Lời giải:
$(0,6-1,125+\frac{15}{11}):(-0,3+\frac{9}{16}-\frac{15}{22})$
$=(\frac{15}{11}-0,525):(\frac{-3}{10}+\frac{9}{16}-\frac{15}{22})$
$=\frac{369}{440}: \frac{-369}{880}=\frac{-880}{440}=-2$