K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

s khó v?

loading...

=>x+95=0

=>x=-95

Bài 1: 

b) Ta có: \(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)

\(\Leftrightarrow\dfrac{x-12}{77}-1+\dfrac{x-11}{78}-1=\dfrac{x-74}{15}-1+\dfrac{x-73}{16}-1\)

\(\Leftrightarrow\dfrac{x-89}{77}+\dfrac{x-89}{78}-\dfrac{x-89}{15}-\dfrac{x-89}{16}=0\)

\(\Leftrightarrow\left(x-89\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)

mà \(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\ne0\)

nên x-89=0

hay x=89

Vậy: S={89}

Bài 1:

a)ĐKXĐ: \(x\notin\left\{3;-1\right\}\)

Ta có: \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x-3\right)\left(x+1\right)}\)

Suy ra: \(x^2+x+x^2-3x-4x=0\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhân\right)\\x=6\left(nhận\right)\end{matrix}\right.\)

Vậy: S={0;6}

20 tháng 3 2020

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

13 tháng 1 2019

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)